geometry_op_impl.cc 3.52 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/geometry_op_impl.cc
 * \brief Geometry operator CPU implementation
 */
#include <dgl/array.h>
#include <numeric>
#include <vector>

namespace dgl {
using runtime::NDArray;
namespace geometry {
namespace impl {

/*!
 * \brief Farthest Point Sampler without the need to compute all pairs of distance.
 * 
 * The input array has shape (N, d), where N is the number of points, and d is the dimension.
 * It consists of a (flatten) batch of point clouds.
 *
 * In each batch, the algorithm starts with the sample index specified by ``start_idx``.
 * Then for each point, we maintain the minimum to-sample distance.
 * Finally, we pick the point with the maximum such distance.
 * This process will be repeated for ``sample_points`` - 1 times.
 */
template <DLDeviceType XPU, typename FloatType, typename IdType>
void FarthestPointSampler(NDArray array, int64_t batch_size, int64_t sample_points,
    NDArray dist, IdArray start_idx, IdArray result) {
  const FloatType* array_data = static_cast<FloatType*>(array->data);
  const int64_t point_in_batch = array->shape[0] / batch_size;
  const int64_t dim = array->shape[1];

  // distance
  FloatType* dist_data = static_cast<FloatType*>(dist->data);

  // sample for each cloud in the batch
  IdType* start_idx_data = static_cast<IdType*>(start_idx->data);

  // return value
  IdType* ret_data = static_cast<IdType*>(result->data);

  int64_t array_start = 0, ret_start = 0;
  // loop for each point cloud sample in this batch
  for (auto b = 0; b < batch_size; b++) {
    // random init start sample
    int64_t sample_idx = (int64_t)start_idx_data[b];
    ret_data[ret_start] = (IdType)(sample_idx);

    // sample the rest `sample_points - 1` points
    for (auto i = 0; i < sample_points - 1; i++) {
      // re-init distance and the argmax
      int64_t dist_argmax = 0;
      FloatType dist_max = -1;

      // update the distance
      for (auto j = 0; j < point_in_batch; j++) {
        // compute the distance on dimensions
        FloatType one_dist = 0;
        for (auto d = 0; d < dim; d++) {
          FloatType tmp = array_data[(array_start + j) * dim + d] -
              array_data[(array_start + sample_idx) * dim + d];
          one_dist += tmp * tmp;
        }

        // for each out-of-set point, keep its nearest to-the-set distance
        if (i == 0 || dist_data[j] > one_dist) {
          dist_data[j] = one_dist;
        }
        // look for the farthest sample
        if (dist_data[j] > dist_max) {
          dist_argmax = j;
          dist_max = dist_data[j];
        }
      }
      // sample the `dist_argmax`-th point
      sample_idx = dist_argmax;
      ret_data[ret_start + i + 1] = (IdType)(sample_idx);
    }

    array_start += point_in_batch;
    ret_start += sample_points;
  }
}

template void FarthestPointSampler<kDLCPU, float, int32_t>(
    NDArray array, int64_t batch_size, int64_t sample_points,
    NDArray dist, IdArray start_idx, IdArray result);
template void FarthestPointSampler<kDLCPU, float, int64_t>(
    NDArray array, int64_t batch_size, int64_t sample_points,
    NDArray dist, IdArray start_idx, IdArray result);
template void FarthestPointSampler<kDLCPU, double, int32_t>(
    NDArray array, int64_t batch_size, int64_t sample_points,
    NDArray dist, IdArray start_idx, IdArray result);
template void FarthestPointSampler<kDLCPU, double, int64_t>(
    NDArray array, int64_t batch_size, int64_t sample_points,
    NDArray dist, IdArray start_idx, IdArray result);

}  // namespace impl
}  // namespace geometry
}  // namespace dgl