3_tree-lstm.py 14.2 KB
Newer Older
1
2
3
"""
.. _model-tree-lstm:

4
Tree-LSTM in DGL
5
==========================
6
7
8
9

**Author**: Zihao Ye, Qipeng Guo, `Minjie Wang
<https://jermainewang.github.io/>`_, `Jake Zhao
<https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang
10
11
12
13
14
15
16
17

.. warning::

    The tutorial aims at gaining insights into the paper, with code as a mean
    of explanation. The implementation thus is NOT optimized for running
    efficiency. For recommended implementation, please refer to the `official
    examples <https://github.com/dmlc/dgl/tree/master/examples>`_.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""

import os

##############################################################################
#
# In this tutorial, you learn to use Tree-LSTM networks for sentiment analysis.
# The Tree-LSTM is a generalization of long short-term memory (LSTM) networks to tree-structured network topologies.
#
# The Tree-LSTM structure was first introduced by Kai et. al in an ACL 2015
# paper: `Improved Semantic Representations From Tree-Structured Long
# Short-Term Memory Networks <https://arxiv.org/pdf/1503.00075.pdf>`__.
# The core idea is to introduce syntactic information for language tasks by
# extending the chain-structured LSTM to a tree-structured LSTM. The dependency
# tree and constituency tree techniques are leveraged to obtain a ''latent tree''.
#
# The challenge in training Tree-LSTMs is batching --- a standard
# technique in machine learning to accelerate optimization. However, since trees
# generally have different shapes by nature, parallization is non-trivial.
# DGL offers an alternative. Pool all the trees into one single graph then
# induce the message passing over them, guided by the structure of each tree.
#
# The task and the dataset
# ------------------------
#
# The steps here use the
# `Stanford Sentiment Treebank <https://nlp.stanford.edu/sentiment/>`__ in
# ``dgl.data``. The dataset provides a fine-grained, tree-level sentiment
# annotation. There are five classes: Very negative, negative, neutral, positive, and
# very positive, which indicate the sentiment in the current subtree. Non-leaf
# nodes in a constituency tree do not contain words, so use a special
# ``PAD_WORD`` token to denote them. During training and inference
# their embeddings would be masked to all-zero.
#
# .. figure:: https://i.loli.net/2018/11/08/5be3d4bfe031b.png
#    :alt:
#
# The figure displays one sample of the SST dataset, which is a
# constituency parse tree with their nodes labeled with sentiment. To
# speed up things, build a tiny set with five sentences and take a look
# at the first one.
#

from collections import namedtuple

os.environ["DGLBACKEND"] = "pytorch"
import dgl
from dgl.data.tree import SSTDataset


SSTBatch = namedtuple("SSTBatch", ["graph", "mask", "wordid", "label"])

# Each sample in the dataset is a constituency tree. The leaf nodes
# represent words. The word is an int value stored in the "x" field.
# The non-leaf nodes have a special word PAD_WORD. The sentiment
# label is stored in the "y" feature field.
trainset = SSTDataset(mode="tiny")  # the "tiny" set has only five trees
tiny_sst = [tr for tr in trainset]
num_vocabs = trainset.vocab_size
num_classes = trainset.num_classes

vocab = trainset.vocab  # vocabulary dict: key -> id
inv_vocab = {
    v: k for k, v in vocab.items()
}  # inverted vocabulary dict: id -> word

a_tree = tiny_sst[0]
for token in a_tree.ndata["x"].tolist():
    if token != trainset.PAD_WORD:
        print(inv_vocab[token], end=" ")
import matplotlib.pyplot as plt

##############################################################################
# Step 1: Batching
# ----------------
#
# Add all the trees to one graph, using
# the :func:`~dgl.batched_graph.batch` API.
#

import networkx as nx

graph = dgl.batch(tiny_sst)


def plot_tree(g):
    # this plot requires pygraphviz package
    pos = nx.nx_agraph.graphviz_layout(g, prog="dot")
    nx.draw(
        g,
        pos,
        with_labels=False,
        node_size=10,
        node_color=[[0.5, 0.5, 0.5]],
        arrowsize=4,
    )
    plt.show()


plot_tree(graph.to_networkx())

#################################################################################
# You can read more about the definition of :func:`~dgl.batch`, or
# skip ahead to the next step:
# .. note::
#
#    **Definition**: :func:`~dgl.batch` unions a list of :math:`B`
#      :class:`~dgl.DGLGraph`\ s and returns a :class:`~dgl.DGLGraph` of batch
#      size :math:`B`.
#
#    - The union includes all the nodes,
#      edges, and their features. The order of nodes, edges, and features are
#      preserved.
#
#        - Given that you have :math:`V_i` nodes for graph
#          :math:`\mathcal{G}_i`, the node ID :math:`j` in graph
#          :math:`\mathcal{G}_i` correspond to node ID
#          :math:`j + \sum_{k=1}^{i-1} V_k` in the batched graph.
#
#        - Therefore, performing feature transformation and message passing on
#          the batched graph is equivalent to doing those
#          on all ``DGLGraph`` constituents in parallel.
#
#    - Duplicate references to the same graph are
#      treated as deep copies; the nodes, edges, and features are duplicated,
#      and mutation on one reference does not affect the other.
#    - The batched graph keeps track of the meta
#      information of the constituents so it can be
#      :func:`~dgl.batched_graph.unbatch`\ ed to list of ``DGLGraph``\ s.
#
# Step 2: Tree-LSTM cell with message-passing APIs
# ------------------------------------------------
#
# Researchers have proposed two types of Tree-LSTMs: Child-Sum
# Tree-LSTMs, and :math:`N`-ary Tree-LSTMs. In this tutorial you focus
# on applying *Binary* Tree-LSTM to binarized constituency trees. This
# application is also known as *Constituency Tree-LSTM*. Use PyTorch
# as a backend framework to set up the network.
#
# In `N`-ary Tree-LSTM, each unit at node :math:`j` maintains a hidden
# representation :math:`h_j` and a memory cell :math:`c_j`. The unit
# :math:`j` takes the input vector :math:`x_j` and the hidden
# representations of the child units: :math:`h_{jl}, 1\leq l\leq N` as
# input, then update its new hidden representation :math:`h_j` and memory
# cell :math:`c_j` by:
#
# .. math::
#
#    i_j & = & \sigma\left(W^{(i)}x_j + \sum_{l=1}^{N}U^{(i)}_l h_{jl} + b^{(i)}\right),  & (1)\\
#    f_{jk} & = & \sigma\left(W^{(f)}x_j + \sum_{l=1}^{N}U_{kl}^{(f)} h_{jl} + b^{(f)} \right), &  (2)\\
#    o_j & = & \sigma\left(W^{(o)}x_j + \sum_{l=1}^{N}U_{l}^{(o)} h_{jl} + b^{(o)} \right), & (3)  \\
#    u_j & = & \textrm{tanh}\left(W^{(u)}x_j + \sum_{l=1}^{N} U_l^{(u)}h_{jl} + b^{(u)} \right), & (4)\\
#    c_j & = & i_j \odot u_j + \sum_{l=1}^{N} f_{jl} \odot c_{jl}, &(5) \\
#    h_j & = & o_j \cdot \textrm{tanh}(c_j), &(6)  \\
#
# It can be decomposed into three phases: ``message_func``,
# ``reduce_func`` and ``apply_node_func``.
#
# .. note::
#    ``apply_node_func`` is a new node UDF that has not been introduced before. In
#    ``apply_node_func``, a user specifies what to do with node features,
#    without considering edge features and messages. In a Tree-LSTM case,
#    ``apply_node_func`` is a must, since there exists (leaf) nodes with
#    :math:`0` incoming edges, which would not be updated with
#    ``reduce_func``.
#

import torch as th
import torch.nn as nn


class TreeLSTMCell(nn.Module):
    def __init__(self, x_size, h_size):
        super(TreeLSTMCell, self).__init__()
        self.W_iou = nn.Linear(x_size, 3 * h_size, bias=False)
        self.U_iou = nn.Linear(2 * h_size, 3 * h_size, bias=False)
        self.b_iou = nn.Parameter(th.zeros(1, 3 * h_size))
        self.U_f = nn.Linear(2 * h_size, 2 * h_size)

    def message_func(self, edges):
        return {"h": edges.src["h"], "c": edges.src["c"]}

    def reduce_func(self, nodes):
        # concatenate h_jl for equation (1), (2), (3), (4)
        h_cat = nodes.mailbox["h"].view(nodes.mailbox["h"].size(0), -1)
        # equation (2)
        f = th.sigmoid(self.U_f(h_cat)).view(*nodes.mailbox["h"].size())
        # second term of equation (5)
        c = th.sum(f * nodes.mailbox["c"], 1)
        return {"iou": self.U_iou(h_cat), "c": c}

    def apply_node_func(self, nodes):
        # equation (1), (3), (4)
        iou = nodes.data["iou"] + self.b_iou
        i, o, u = th.chunk(iou, 3, 1)
        i, o, u = th.sigmoid(i), th.sigmoid(o), th.tanh(u)
        # equation (5)
        c = i * u + nodes.data["c"]
        # equation (6)
        h = o * th.tanh(c)
        return {"h": h, "c": c}


##############################################################################
# Step 3: Define traversal
# ------------------------
#
# After you define the message-passing functions, induce the
# right order to trigger them. This is a significant departure from models
# such as GCN, where all nodes are pulling messages from upstream ones
# *simultaneously*.
#
# In the case of Tree-LSTM, messages start from leaves of the tree, and
# propagate/processed upwards until they reach the roots. A visualization
# is as follows:
#
# .. figure:: https://i.loli.net/2018/11/09/5be4b5d2df54d.gif
#    :alt:
#
# DGL defines a generator to perform the topological sort, each item is a
# tensor recording the nodes from bottom level to the roots. One can
# appreciate the degree of parallelism by inspecting the difference of the
# followings:
#

# to heterogenous graph
trv_a_tree = dgl.graph(a_tree.edges())
print("Traversing one tree:")
print(dgl.topological_nodes_generator(trv_a_tree))

# to heterogenous graph
trv_graph = dgl.graph(graph.edges())
print("Traversing many trees at the same time:")
print(dgl.topological_nodes_generator(trv_graph))

##############################################################################
# Call :meth:`~dgl.DGLGraph.prop_nodes` to trigger the message passing:

import dgl.function as fn
import torch as th

259
trv_graph.ndata["a"] = th.ones(graph.num_nodes(), 1)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
traversal_order = dgl.topological_nodes_generator(trv_graph)
trv_graph.prop_nodes(
    traversal_order,
    message_func=fn.copy_u("a", "a"),
    reduce_func=fn.sum("a", "a"),
)

# the following is a syntax sugar that does the same
# dgl.prop_nodes_topo(graph)

##############################################################################
# .. note::
#
#    Before you call :meth:`~dgl.DGLGraph.prop_nodes`, specify a
#    `message_func` and `reduce_func` in advance. In the example, you can see built-in
#    copy-from-source and sum functions as message functions, and a reduce
#    function for demonstration.
#
# Putting it together
# -------------------
#
# Here is the complete code that specifies the ``Tree-LSTM`` class.
#


class TreeLSTM(nn.Module):
    def __init__(
        self,
        num_vocabs,
        x_size,
        h_size,
        num_classes,
        dropout,
        pretrained_emb=None,
    ):
        super(TreeLSTM, self).__init__()
        self.x_size = x_size
        self.embedding = nn.Embedding(num_vocabs, x_size)
        if pretrained_emb is not None:
            print("Using glove")
            self.embedding.weight.data.copy_(pretrained_emb)
            self.embedding.weight.requires_grad = True
        self.dropout = nn.Dropout(dropout)
        self.linear = nn.Linear(h_size, num_classes)
        self.cell = TreeLSTMCell(x_size, h_size)

    def forward(self, batch, h, c):
        """Compute tree-lstm prediction given a batch.

        Parameters
        ----------
        batch : dgl.data.SSTBatch
            The data batch.
        h : Tensor
            Initial hidden state.
        c : Tensor
            Initial cell state.

        Returns
        -------
        logits : Tensor
            The prediction of each node.
        """
        g = batch.graph
        # to heterogenous graph
        g = dgl.graph(g.edges())
        # feed embedding
        embeds = self.embedding(batch.wordid * batch.mask)
        g.ndata["iou"] = self.cell.W_iou(
            self.dropout(embeds)
        ) * batch.mask.float().unsqueeze(-1)
        g.ndata["h"] = h
        g.ndata["c"] = c
        # propagate
        dgl.prop_nodes_topo(
            g,
            message_func=self.cell.message_func,
            reduce_func=self.cell.reduce_func,
            apply_node_func=self.cell.apply_node_func,
        )
        # compute logits
        h = self.dropout(g.ndata.pop("h"))
        logits = self.linear(h)
        return logits


import torch.nn.functional as F

##############################################################################
# Main Loop
# ---------
#
# Finally, you could write a training paradigm in PyTorch.
#

from torch.utils.data import DataLoader

device = th.device("cpu")
# hyper parameters
x_size = 256
h_size = 256
dropout = 0.5
lr = 0.05
weight_decay = 1e-4
epochs = 10

# create the model
model = TreeLSTM(
    trainset.vocab_size, x_size, h_size, trainset.num_classes, dropout
)
print(model)

# create the optimizer
optimizer = th.optim.Adagrad(
    model.parameters(), lr=lr, weight_decay=weight_decay
)


def batcher(dev):
    def batcher_dev(batch):
        batch_trees = dgl.batch(batch)
        return SSTBatch(
            graph=batch_trees,
            mask=batch_trees.ndata["mask"].to(device),
            wordid=batch_trees.ndata["x"].to(device),
            label=batch_trees.ndata["y"].to(device),
        )

    return batcher_dev


train_loader = DataLoader(
    dataset=tiny_sst,
    batch_size=5,
    collate_fn=batcher(device),
    shuffle=False,
    num_workers=0,
)

# training loop
for epoch in range(epochs):
    for step, batch in enumerate(train_loader):
        g = batch.graph
403
        n = g.num_nodes()
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        h = th.zeros((n, h_size))
        c = th.zeros((n, h_size))
        logits = model(batch, h, c)
        logp = F.log_softmax(logits, 1)
        loss = F.nll_loss(logp, batch.label, reduction="sum")
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        pred = th.argmax(logits, 1)
        acc = float(th.sum(th.eq(batch.label, pred))) / len(batch.label)
        print(
            "Epoch {:05d} | Step {:05d} | Loss {:.4f} | Acc {:.4f} |".format(
                epoch, step, loss.item(), acc
            )
        )
##############################################################################
# To train the model on a full dataset with different settings (such as CPU or GPU),
# refer to the `PyTorch example <https://github.com/dmlc/dgl/tree/master/examples/pytorch/tree_lstm>`__.
# There is also an implementation of the Child-Sum Tree-LSTM.