gatconv.py 6.72 KB
Newer Older
1
2
3
4
5
6
7
8
"""Torch modules for graph attention networks(GAT)."""
# pylint: disable= no-member, arguments-differ, invalid-name
import torch as th
from torch import nn

from .... import function as fn
from ..softmax import edge_softmax
from ..utils import Identity
9
from ....utils import expand_as_pair
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

# pylint: enable=W0235
class GATConv(nn.Module):
    r"""Apply `Graph Attention Network <https://arxiv.org/pdf/1710.10903.pdf>`__
    over an input signal.

    .. math::
        h_i^{(l+1)} = \sum_{j\in \mathcal{N}(i)} \alpha_{i,j} W^{(l)} h_j^{(l)}

    where :math:`\alpha_{ij}` is the attention score bewteen node :math:`i` and
    node :math:`j`:

    .. math::
        \alpha_{ij}^{l} & = \mathrm{softmax_i} (e_{ij}^{l})

        e_{ij}^{l} & = \mathrm{LeakyReLU}\left(\vec{a}^T [W h_{i} \| W h_{j}]\right)

    Parameters
    ----------
29
    in_feats : int, or pair of ints
30
        Input feature size.
31
32
33
34
35

        If the layer is to be applied to a unidirectional bipartite graph, ``in_feats``
        specifies the input feature size on both the source and destination nodes.  If
        a scalar is given, the source and destination node feature size would take the
        same value.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    out_feats : int
        Output feature size.
    num_heads : int
        Number of heads in Multi-Head Attention.
    feat_drop : float, optional
        Dropout rate on feature, defaults: ``0``.
    attn_drop : float, optional
        Dropout rate on attention weight, defaults: ``0``.
    negative_slope : float, optional
        LeakyReLU angle of negative slope.
    residual : bool, optional
        If True, use residual connection.
    activation : callable activation function/layer or None, optional.
        If not None, applies an activation function to the updated node features.
        Default: ``None``.
    """
    def __init__(self,
                 in_feats,
                 out_feats,
                 num_heads,
                 feat_drop=0.,
                 attn_drop=0.,
                 negative_slope=0.2,
                 residual=False,
                 activation=None):
        super(GATConv, self).__init__()
        self._num_heads = num_heads
63
        self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
64
        self._out_feats = out_feats
65
66
67
68
69
70
71
72
        if isinstance(in_feats, tuple):
            self.fc_src = nn.Linear(
                self._in_src_feats, out_feats * num_heads, bias=False)
            self.fc_dst = nn.Linear(
                self._in_dst_feats, out_feats * num_heads, bias=False)
        else:
            self.fc = nn.Linear(
                self._in_src_feats, out_feats * num_heads, bias=False)
73
74
75
76
77
78
        self.attn_l = nn.Parameter(th.FloatTensor(size=(1, num_heads, out_feats)))
        self.attn_r = nn.Parameter(th.FloatTensor(size=(1, num_heads, out_feats)))
        self.feat_drop = nn.Dropout(feat_drop)
        self.attn_drop = nn.Dropout(attn_drop)
        self.leaky_relu = nn.LeakyReLU(negative_slope)
        if residual:
79
80
81
            if self._in_dst_feats != out_feats:
                self.res_fc = nn.Linear(
                    self._in_dst_feats, num_heads * out_feats, bias=False)
82
83
84
85
86
87
88
89
90
91
            else:
                self.res_fc = Identity()
        else:
            self.register_buffer('res_fc', None)
        self.reset_parameters()
        self.activation = activation

    def reset_parameters(self):
        """Reinitialize learnable parameters."""
        gain = nn.init.calculate_gain('relu')
92
93
94
95
96
        if hasattr(self, 'fc'):
            nn.init.xavier_normal_(self.fc.weight, gain=gain)
        else: # bipartite graph neural networks
            nn.init.xavier_normal_(self.fc_src.weight, gain=gain)
            nn.init.xavier_normal_(self.fc_dst.weight, gain=gain)
97
98
99
100
101
102
103
104
105
106
107
108
        nn.init.xavier_normal_(self.attn_l, gain=gain)
        nn.init.xavier_normal_(self.attn_r, gain=gain)
        if isinstance(self.res_fc, nn.Linear):
            nn.init.xavier_normal_(self.res_fc.weight, gain=gain)

    def forward(self, graph, feat):
        r"""Compute graph attention network layer.

        Parameters
        ----------
        graph : DGLGraph
            The graph.
109
110
111
112
113
        feat : torch.Tensor or pair of torch.Tensor
            If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where
            :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes.
            If a pair of torch.Tensor is given, the pair must contain two tensors of shape
            :math:`(N_{in}, D_{in_{src}})` and :math:`(N_{out}, D_{in_{dst}})`.
114
115
116
117
118
119
120
121

        Returns
        -------
        torch.Tensor
            The output feature of shape :math:`(N, H, D_{out})` where :math:`H`
            is the number of heads, and :math:`D_{out}` is size of output feature.
        """
        graph = graph.local_var()
122
123
124
125
126
127
128
129
130
        if isinstance(feat, tuple):
            h_src = self.feat_drop(feat[0])
            h_dst = self.feat_drop(feat[1])
            feat_src = self.fc_src(h_src).view(-1, self._num_heads, self._out_feats)
            feat_dst = self.fc_dst(h_dst).view(-1, self._num_heads, self._out_feats)
        else:
            h_src = h_dst = self.feat_drop(feat)
            feat_src = feat_dst = self.fc(h_src).view(
                -1, self._num_heads, self._out_feats)
131
132
133
134
135
136
137
138
139
140
        # NOTE: GAT paper uses "first concatenation then linear projection"
        # to compute attention scores, while ours is "first projection then
        # addition", the two approaches are mathematically equivalent:
        # We decompose the weight vector a mentioned in the paper into
        # [a_l || a_r], then
        # a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
        # Our implementation is much efficient because we do not need to
        # save [Wh_i || Wh_j] on edges, which is not memory-efficient. Plus,
        # addition could be optimized with DGL's built-in function u_add_v,
        # which further speeds up computation and saves memory footprint.
141
142
143
144
        el = (feat_src * self.attn_l).sum(dim=-1).unsqueeze(-1)
        er = (feat_dst * self.attn_r).sum(dim=-1).unsqueeze(-1)
        graph.srcdata.update({'ft': feat_src, 'el': el})
        graph.dstdata.update({'er': er})
145
        # compute edge attention, el and er are a_l Wh_i and a_r Wh_j respectively.
146
147
148
149
150
151
152
        graph.apply_edges(fn.u_add_v('el', 'er', 'e'))
        e = self.leaky_relu(graph.edata.pop('e'))
        # compute softmax
        graph.edata['a'] = self.attn_drop(edge_softmax(graph, e))
        # message passing
        graph.update_all(fn.u_mul_e('ft', 'a', 'm'),
                         fn.sum('m', 'ft'))
153
        rst = graph.dstdata['ft']
154
155
        # residual
        if self.res_fc is not None:
156
            resval = self.res_fc(h_dst).view(h_dst.shape[0], -1, self._out_feats)
157
158
159
160
161
            rst = rst + resval
        # activation
        if self.activation:
            rst = self.activation(rst)
        return rst