gcn_cv_sc.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data


class NodeUpdate(gluon.Block):
    def __init__(self, layer_id, in_feats, out_feats, dropout, activation=None, test=False, concat=False):
        super(NodeUpdate, self).__init__()
        self.layer_id = layer_id
        self.dropout = dropout
        self.test = test
        self.concat = concat
        with self.name_scope():
            self.dense = gluon.nn.Dense(out_feats, in_units=in_feats)
            self.activation = activation

    def forward(self, node):
        h = node.data['h']
24
        norm = node.data['norm']
25
26
27
28
29
        if self.test:
            h = h * norm
        else:
            agg_history_str = 'agg_h_{}'.format(self.layer_id-1)
            agg_history = node.data[agg_history_str]
30
            subg_norm = node.data['subg_norm']
31
            # control variate
32
            h = h * subg_norm + agg_history * norm
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            if self.dropout:
                h = mx.nd.Dropout(h, p=self.dropout)
        h = self.dense(h)
        if self.concat:
            h = mx.nd.concat(h, self.activation(h))
        elif self.activation:
            h = self.activation(h)
        return {'activation': h}


class GCNSampling(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 **kwargs):
        super(GCNSampling, self).__init__(**kwargs)
        self.dropout = dropout
        self.n_layers = n_layers
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.dense = gluon.nn.Dense(n_hidden, in_units=in_feats)
            self.activation = activation
            # hidden layers
            for i in range(1, n_layers):
                skip_start = (i == self.n_layers-1)
                self.layers.add(NodeUpdate(i, n_hidden, n_hidden, dropout, activation, concat=skip_start))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, dropout))

    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        if self.dropout:
            h = mx.nd.Dropout(h, p=self.dropout)
        h = self.dense(h)

        skip_start = (0 == self.n_layers-1)
        if skip_start:
            h = mx.nd.concat(h, self.activation(h))
        else:
            h = self.activation(h)

        for i, layer in enumerate(self.layers):
            new_history = h.copy().detach()
            history_str = 'h_{}'.format(i)
            history = nf.layers[i].data[history_str]
            h = h - history

            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
88
                             fn.sum(msg='m', out='h'),
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                             layer)
            h = nf.layers[i+1].data.pop('activation')
            # update history
            if i < nf.num_layers-1:
                nf.layers[i].data[history_str] = new_history

        return h


class GCNInfer(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 **kwargs):
        super(GCNInfer, self).__init__(**kwargs)
        self.n_layers = n_layers
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.dense = gluon.nn.Dense(n_hidden, in_units=in_feats)
            self.activation = activation
            # hidden layers
            for i in range(1, n_layers):
                skip_start = (i == self.n_layers-1)
                self.layers.add(NodeUpdate(i, n_hidden, n_hidden, 0, activation, True, concat=skip_start))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, 0, None, True))


    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        h = self.dense(h)

        skip_start = (0 == self.n_layers-1)
        if skip_start:
            h = mx.nd.concat(h, self.activation(h))
        else:
            h = self.activation(h)

        for i, layer in enumerate(self.layers):
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')

        return h


142
def gcn_cv_train(g, ctx, args, n_classes, train_nid, test_nid, n_test_samples, distributed):
143
144
    features = g.ndata['features']
    labels = g.ndata['labels']
145
    in_feats = features.shape[1]
146
    g_ctx = features.context
147
148

    norm = mx.nd.expand_dims(1./g.in_degrees().astype('float32'), 1)
149
    g.ndata['norm'] = norm.as_in_context(g_ctx)
150
151
    degs = g.in_degrees().astype('float32').asnumpy()
    degs[degs > args.num_neighbors] = args.num_neighbors
152
    g.ndata['subg_norm'] = mx.nd.expand_dims(mx.nd.array(1./degs, ctx=g_ctx), 1)
153
    n_layers = args.n_layers
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    if distributed:
        g.dist_update_all(fn.copy_src(src='features', out='m'),
                          fn.sum(msg='m', out='preprocess'),
                          lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})
        for i in range(n_layers - 1):
            g.init_ndata('h_{}'.format(i), (features.shape[0], args.n_hidden), 'float32')
            g.init_ndata('agg_h_{}'.format(i), (features.shape[0], args.n_hidden), 'float32')
        g.init_ndata('h_{}'.format(n_layers-1), (features.shape[0], 2*args.n_hidden), 'float32')
        g.init_ndata('agg_h_{}'.format(n_layers-1), (features.shape[0], 2*args.n_hidden), 'float32')
    else:
        g.update_all(fn.copy_src(src='features', out='m'),
                     fn.sum(msg='m', out='preprocess'),
                     lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})
        for i in range(n_layers):
            g.ndata['h_{}'.format(i)] = mx.nd.zeros((features.shape[0], args.n_hidden), ctx=g_ctx)
            g.ndata['agg_h_{}'.format(i)] = mx.nd.zeros((features.shape[0], args.n_hidden), ctx=g_ctx)
        g.ndata['h_{}'.format(n_layers-1)] = mx.nd.zeros((features.shape[0], 2*args.n_hidden), ctx=g_ctx)
        g.ndata['agg_h_{}'.format(n_layers-1)] = mx.nd.zeros((features.shape[0], 2*args.n_hidden), ctx=g_ctx)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

    model = GCNSampling(in_feats,
                        args.n_hidden,
                        n_classes,
                        n_layers,
                        mx.nd.relu,
                        args.dropout,
                        prefix='GCN')

    model.initialize(ctx=ctx)

    loss_fcn = gluon.loss.SoftmaxCELoss()

    infer_model = GCNInfer(in_feats,
                           args.n_hidden,
                           n_classes,
                           n_layers,
                           mx.nd.relu,
                           prefix='GCN')

    infer_model.initialize(ctx=ctx)

    # use optimizer
    print(model.collect_params())
197
    kv_type = 'dist_sync' if distributed else 'local'
198
199
    trainer = gluon.Trainer(model.collect_params(), 'adam',
                            {'learning_rate': args.lr, 'wd': args.weight_decay},
200
                            kvstore=mx.kv.create(kv_type))
201
202
203

    # initialize graph
    dur = []
204
    adj = g.adjacency_matrix().as_in_context(g_ctx)
205
    for epoch in range(args.n_epochs):
206
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size,
207
                                                       args.num_neighbors,
208
                                                       neighbor_type='in',
209
                                                       num_workers=32,
210
211
212
                                                       shuffle=True,
                                                       num_hops=n_layers,
                                                       seed_nodes=train_nid):
213
214
            for i in range(n_layers):
                agg_history_str = 'agg_h_{}'.format(i)
215
216
217
218
219
                dests = nf.layer_parent_nid(i+1).as_in_context(g_ctx)
                # TODO we could use DGLGraph.pull to implement this, but the current
                # implementation of pull is very slow. Let's manually do it for now.
                g.ndata[agg_history_str][dests] = mx.nd.dot(mx.nd.take(adj, dests),
                                                            g.ndata['h_{}'.format(i)])
220
221
222

            node_embed_names = [['preprocess', 'h_0']]
            for i in range(1, n_layers):
223
224
                node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1), 'subg_norm', 'norm'])
            node_embed_names.append(['agg_h_{}'.format(n_layers-1), 'subg_norm', 'norm'])
225

226
            nf.copy_from_parent(node_embed_names=node_embed_names, ctx=ctx)
227
228
229
            # forward
            with mx.autograd.record():
                pred = model(nf)
230
231
                batch_nids = nf.layer_parent_nid(-1)
                batch_labels = labels[batch_nids].as_in_context(ctx)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                loss = loss_fcn(pred, batch_labels)
                loss = loss.sum() / len(batch_nids)

            loss.backward()
            trainer.step(batch_size=1)

            node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)]
            node_embed_names.append([])

            nf.copy_to_parent(node_embed_names=node_embed_names)

        infer_params = infer_model.collect_params()

        for key in infer_params:
            idx = trainer._param2idx[key]
            trainer._kvstore.pull(idx, out=infer_params[key].data())

        num_acc = 0.
250
        num_tests = 0
251

252
253
254
255
256
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                       g.number_of_nodes(),
                                                       neighbor_type='in',
                                                       num_hops=n_layers,
                                                       seed_nodes=test_nid):
257
258
259
260
            node_embed_names = [['preprocess']]
            for i in range(n_layers):
                node_embed_names.append(['norm'])

261
            nf.copy_from_parent(node_embed_names=node_embed_names, ctx=ctx)
262
            pred = infer_model(nf)
263
264
            batch_nids = nf.layer_parent_nid(-1)
            batch_labels = labels[batch_nids].as_in_context(ctx)
265
            num_acc += (pred.argmax(axis=1) == batch_labels).sum().asscalar()
266
267
268
269
            num_tests += nf.layer_size(-1)
            break

        print("Test Accuracy {:.4f}". format(num_acc/num_tests))