"vscode:/vscode.git/clone" did not exist on "7ce31b4e0fc4cde03d2fe5ebf5a3fa3a3154b9c8"
quickstart.ipynb 40.5 KB
Newer Older
1
2
3
4
5
6
7
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "private_outputs": true,
8
9
      "toc_visible": true,
      "gpuType": "T4"
10
11
12
13
14
15
16
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
17
    }
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# Quickstart\n",
        "\n",
        "The tutorial provides a quick walkthrough of the classes and operators provided by the `dgl.sparse` package.\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb)"
      ],
      "metadata": {
        "id": "E0DAKDMuWz7I"
      }
    },
    {
      "cell_type": "code",
      "source": [
Minjie Wang's avatar
Minjie Wang committed
36
        "# Install the required packages.\n",
37
38
        "\n",
        "import os\n",
39
40
41
        "# Uncomment following commands to download Pytorch and DGL\n",
        "# !pip install torch==2.0.0+cpu torchvision==0.15.1+cpu torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cpu > /dev/null\n",
        "# !pip install  dgl==1.1.0 -f https://data.dgl.ai/wheels/repo.html > /dev/null\n",
42
43
44
45
46
47
48
49
50
51
        "import torch\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "\n",
        "try:\n",
        "    import dgl.sparse as dglsp\n",
        "    installed = True\n",
        "except ImportError:\n",
        "    installed = False\n",
52
        "print(\"DGL installed!\" if installed else \"DGL not found!\")"
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
      ],
      "metadata": {
        "id": "19UZd7wyWzpT"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Sparse Matrix\n",
        "\n",
        "The core abstraction of DGL's sparse package is the `SparseMatrix` class. Compared with other sparse matrix libraries (such as `scipy.sparse` and `torch.sparse`), DGL's `SparseMatrix` is specialized for the deep learning workloads on structure data (e.g., Graph Neural Networks), with the following features:\n",
        "\n",
        "* **Auto sparse format.** Don't bother choosing between different sparse formats. There is only one `SparseMatrix` and it will select the best format for the operation to be performed.\n",
        "* **Non-zero elements can be scalar or vector.** Easy for modeling relations (e.g., edges) by vector representation.\n",
        "* **Fully PyTorch compatible.** The package is built upon PyTorch and is natively compatible with other tools in the PyTorch ecosystem.\n"
      ],
      "metadata": {
        "id": "GsWoAGC4RpHw"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
78
        "### Creating a DGL Sparse Matrix\n",
79
        "\n",
80
        "The simplest way to create a sparse matrix is using the `spmatrix` API by providing the indices of the non-zero elements. The indices are stored in a tensor of shape `(2, nnz)`, where the `i`-th non-zero element is stored at position `(indices[0][i], indices[1][i])`. The code below creates a 3x3 sparse matrix.\n"
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
      ],
      "metadata": {
        "id": "_q4HYodcWenB"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "h-ryVEs1PuIP"
      },
      "outputs": [],
      "source": [
        "import torch\n",
        "import dgl.sparse as dglsp\n",
        "\n",
97
98
99
100
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
        "A = dglsp.spmatrix(i)  # 1.0 is default value for nnz elements.\n",
        "\n",
101
102
103
104
105
106
107
108
109
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
110
        "If not specified, the shape is inferred automatically from the indices but you can specify it explicitly too."
111
112
113
114
115
116
117
118
      ],
      "metadata": {
        "id": "W1JJg-eZ7K3t"
      }
    },
    {
      "cell_type": "code",
      "source": [
119
120
        "i = torch.tensor([[0, 0, 1],\n",
        "                  [0, 2, 0]])\n",
121
        "\n",
122
        "A1 = dglsp.spmatrix(i)\n",
123
124
125
126
        "print(f\"Implicit Shape: {A1.shape}\")\n",
        "print(A1.to_dense())\n",
        "print(\"\")\n",
        "\n",
127
        "A2 = dglsp.spmatrix(i, shape=(3, 3))\n",
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        "print(f\"Explicit Shape: {A2.shape}\")\n",
        "print(A2.to_dense())"
      ],
      "metadata": {
        "id": "80NNSQfd7L5V"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Both scalar values and vector values can be set for nnz elements in Sparse Matrix."
      ],
      "metadata": {
        "id": "zdNgUf0ShfCe"
      }
    },
    {
      "cell_type": "code",
      "source": [
149
150
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
151
152
153
154
155
156
        "# The length of the value should match the nnz elements represented by the\n",
        "# sparse matrix format.\n",
        "scalar_val = torch.tensor([1., 2., 3.])\n",
        "vector_val = torch.tensor([[1., 1.], [2., 2.], [3., 3.]])\n",
        "\n",
        "print(\"-----Scalar Values-----\")\n",
157
        "A = dglsp.spmatrix(i, scalar_val)\n",
158
159
160
161
162
163
164
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"-----Vector Values-----\")\n",
165
        "A = dglsp.spmatrix(i, vector_val)\n",
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())"
      ],
      "metadata": {
        "id": "buE9ZkKvhp1f"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "*Duplicated indices*"
      ],
      "metadata": {
        "id": "7ufTCDAVsrmP"
      }
    },
    {
      "cell_type": "code",
      "source": [
189
190
        "i = torch.tensor([[0, 0, 0, 1],\n",
        "                  [0, 2, 2, 0]])\n",
191
        "val = torch.tensor([1., 2., 3., 4])\n",
192
        "A = dglsp.spmatrix(i, val)\n",
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        "print(A)\n",
        "print(f\"Whether A contains duplicate indices: {A.has_duplicate()}\")\n",
        "print(\"\")\n",
        "\n",
        "B = A.coalesce()\n",
        "print(B)\n",
        "print(f\"Whether B contains duplicate indices: {B.has_duplicate()}\")"
      ],
      "metadata": {
        "id": "ilSAlFLOs0o8"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
210
211
212
        "**val_like**\n",
        "\n",
        "You can create a new sparse matrix by retaining the non-zero indices of a given sparse matrix but with different non-zero values."
213
214
      ],
      "metadata": {
215
        "id": "ZJ09qM5NaxuI"
216
217
218
219
220
      }
    },
    {
      "cell_type": "code",
      "source": [
221
222
223
224
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
        "val = torch.tensor([1., 2., 3.])\n",
        "A = dglsp.spmatrix(i, val)\n",
225
        "\n",
226
227
228
        "new_val = torch.tensor([4., 5., 6.])\n",
        "B = dglsp.val_like(A, new_val)\n",
        "print(B)"
229
230
      ],
      "metadata": {
231
        "id": "UB3lKJVBbsUD"
232
233
234
235
236
237
238
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
239
        "**Create a sparse matrix from various sparse formats**\n",
240
        "\n",
241
242
243
        "*   `from_coo()`: Create a sparse matrix from [COO](https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_(COO)) format.\n",
        "*   `from_csr()`: Create a sparse matrix from [CSR](https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)) format.\n",
        "*   `from_csc()`: Create a sparse matrix from [CSC](https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_(CSC_or_CCS)) format."
244
245
      ],
      "metadata": {
246
        "id": "nWjBSFDBXDPJ"
247
248
249
250
251
      }
    },
    {
      "cell_type": "code",
      "source": [
252
253
        "row = torch.tensor([0, 1, 2, 2, 2])\n",
        "col = torch.tensor([1, 2, 0, 1, 2])\n",
254
        "\n",
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        "print(\"-----Create from COO format-----\")\n",
        "A = dglsp.from_coo(row, col)\n",
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "indptr = torch.tensor([0, 1, 2, 5])\n",
        "indices = torch.tensor([1, 2, 0, 1, 2])\n",
        "\n",
        "print(\"-----Create from CSR format-----\")\n",
        "A = dglsp.from_csr(indptr, indices)\n",
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"-----Create from CSC format-----\")\n",
        "B = dglsp.from_csc(indptr, indices)\n",
        "print(B)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(B.to_dense())"
280
281
      ],
      "metadata": {
282
        "id": "3puXyMFsvdlj"
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Attributes and methods of a DGL Sparse Matrix"
      ],
      "metadata": {
        "id": "nd4hJ9ysd4St"
      }
    },
    {
      "cell_type": "code",
      "source": [
299
300
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
301
        "val = torch.tensor([1., 2., 3., 4.])\n",
302
        "A = dglsp.spmatrix(i, val)\n",
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        "\n",
        "print(f\"Shape of sparse matrix: {A.shape}\")\n",
        "print(f\"The number of nonzero elements of sparse matrix: {A.nnz}\")\n",
        "print(f\"Datatype of sparse matrix: {A.dtype}\")\n",
        "print(f\"Device sparse matrix is stored on: {A.device}\")\n",
        "print(f\"Get the values of the nonzero elements: {A.val}\")\n",
        "print(f\"Get the row indices of the nonzero elements: {A.row}\")\n",
        "print(f\"Get the column indices of the nonzero elements: {A.col}\")\n",
        "print(f\"Get the coordinate (COO) representation: {A.coo()}\")\n",
        "print(f\"Get the compressed sparse row (CSR) representation: {A.csr()}\")\n",
        "print(f\"Get the compressed sparse column (CSC) representation: {A.csc()}\")"
      ],
      "metadata": {
        "id": "OKbFiWKIzZVe"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**dtype and/or device conversion**"
      ],
      "metadata": {
        "id": "VzosM7i3yQPK"
      }
    },
    {
      "cell_type": "code",
      "source": [
333
334
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
335
        "val = torch.tensor([1., 2., 3., 4.])\n",
336
        "A = dglsp.spmatrix(i, val)\n",
337
        "\n",
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
338
        "B = A.to(device='cpu', dtype=torch.int32)\n",
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        "print(f\"Device sparse matrix is stored on: {B.device}\")\n",
        "print(f\"Datatype of sparse matrix: {B.dtype}\")"
      ],
      "metadata": {
        "id": "y_RJihw-ypXp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Similar to pytorch, we also provide various fine-grained APIs ([Doc](https://docs.dgl.ai/en/latest/api/python/dgl.sparse_v0.html)) for dtype and/or device conversion."
      ],
      "metadata": {
        "id": "U26arLlJzfkN"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Diagonal Matrix\n",
        "\n",
        "Diagonal Matrix is a special type of Sparse Matrix, in which the entries outside the main diagonal are all zero.\n",
        "\n",
        "\n"
      ],
      "metadata": {
        "id": "EFe9ABRuWHqf"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
373
374
        "### Initializing a DGL Diagonal Sparse Matrix\n",
        "A DGL Diagonal Sparse Matrix can be initiate by `dglsp.diag()`.\n",
375
        "\n",
376
        "Identity Matrix is a special type of Diagonal Sparse Matrix, in which all the value on the diagonal are 1.0. Use `dglsp.identity()` to initiate a Diagonal Sparse Matrix."
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
      ],
      "metadata": {
        "id": "1CeCoE2Fgl_x"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "val = torch.tensor([1., 2., 3., 4.])\n",
        "D = dglsp.diag(val)\n",
        "print(D)\n",
        "\n",
        "I = dglsp.identity(shape=(3, 3))\n",
        "print(I)"
      ],
      "metadata": {
        "id": "9wzJNApahXAR"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
401
        "## Operations on Sparse Matrix\n",
402
403
404
405
406
407
        "*   Elementwise operations\n",
        "    *   `A + B`\n",
        "    *   `A - B`\n",
        "    *   `A * B`\n",
        "    *   `A / B`\n",
        "    *   `A ** scalar`\n",
408
409
        "*   Broadcast operations\n",
        "    *   `sp_<op>_v()`\n",
410
411
412
413
414
415
416
417
418
        "*   Reduce operations\n",
        "    *   `reduce()`\n",
        "    *   `sum()`\n",
        "    *   `smax()`\n",
        "    *   `smin()`\n",
        "    *   `smean()`\n",
        "*   Matrix transformations\n",
        "    *   `SparseMatrix.transpose()` or `SparseMatrix.T`\n",
        "    *   `SparseMatrix.neg()`\n",
419
        "    *   `SparseMatrix.inv()`\n",
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        "*   Matrix multiplication\n",
        "    *   `matmul()`\n",
        "    *   `sddmm()`\n",
        "\n",
        "\n",
        "*We are using dense format to print sparse matrix in this tutorial since it is more intuitive to read.*"
      ],
      "metadata": {
        "id": "Tjsapqp6zSFR"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Elementwise operations*"
      ],
      "metadata": {
        "id": "psvGwcIqYvC2"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**add(A, B), equivalent to A + B**\n",
        "\n",
445
        "Element-wise addition on two sparse matrices, returning a sparse matrix."
446
447
448
449
450
451
452
453
      ],
      "metadata": {
        "id": "39YJitpW-K9v"
      }
    },
    {
      "cell_type": "code",
      "source": [
454
455
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
456
        "val = torch.tensor([1., 2., 3.])\n",
457
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
458
459
460
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
461
462
        "i = torch.tensor([[0, 1, 2],\n",
        "                  [0, 2, 1]])\n",
463
        "val = torch.tensor([4., 5., 6.])\n",
464
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"A1 + A2:\")\n",
        "print((A1 + A2).to_dense())\n",
        "\n",
        "print(\"A1 + D1:\")\n",
        "print((A1 + D1).to_dense())\n",
        "\n",
        "print(\"D1 + D2:\")\n",
        "print((D1 + D2).to_dense())"
      ],
      "metadata": {
        "id": "pj3Ckx41-BSu"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
496
        "**sub(A, B), equivalent to A - B**\n",
497
        "\n",
498
        "Element-wise substraction on two sparse matrices, returning a sparse matrix."
499
500
501
502
503
504
505
506
      ],
      "metadata": {
        "id": "i25N0JHUTUX9"
      }
    },
    {
      "cell_type": "code",
      "source": [
507
508
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
509
        "val = torch.tensor([1., 2., 3.])\n",
510
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
511
512
513
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
514
515
        "i = torch.tensor([[0, 1, 2],\n",
        "                  [0, 2, 1]])\n",
516
        "val = torch.tensor([4., 5., 6.])\n",
517
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"A1 - A2:\")\n",
        "print((A1 - A2).to_dense())\n",
        "\n",
        "print(\"A1 - D1:\")\n",
        "print((A1 - D1).to_dense())\n",
        "\n",
        "print(\"D1 - A1:\")\n",
        "print((D1 - A1).to_dense())\n",
        "\n",
        "print(\"D1 - D2:\")\n",
        "print((D1 - D2).to_dense())"
      ],
      "metadata": {
        "id": "GMxfz-cyT129"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**mul(A, B), equivalent to A * B**\n",
        "\n",
554
        "Element-wise multiplication on two sparse matrices or on a sparse matrix and a scalar, returning a sparse matrix."
555
556
557
558
559
560
561
562
      ],
      "metadata": {
        "id": "bg45jnq8T9EJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
563
564
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
565
        "val = torch.tensor([1., 2., 3.])\n",
566
567
568
569
570
571
572
573
574
575
576
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
        "i = torch.tensor([[0, 1, 2, 2],\n",
        "                  [0, 2, 0, 1]])\n",
        "val = torch.tensor([1., 2., 3., 4.])\n",
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
        "\n",
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
577
        "\n",
578
579
580
581
582
583
584
        "print(\"A1 * 3:\")\n",
        "print((A1 * 3).to_dense())\n",
        "print(\"3 * A1:\")\n",
        "print((3 * A1).to_dense())\n",
        "\n",
        "print(\"A1 * A2\")\n",
        "print((A1 * A2).to_dense())\n",
585
586
587
588
589
590
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
591
592
593
        "print(\"D1 * A2\")\n",
        "print((D1 * A2).to_dense())\n",
        "\n",
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"D1 * -2:\")\n",
        "print((D1 * -2).to_dense())\n",
        "print(\"-2 * D1:\")\n",
        "print((-2 * D1).to_dense())\n",
        "\n",
        "print(\"D1 * D2:\")\n",
        "print((D1 * D2).to_dense())"
      ],
      "metadata": {
        "id": "4PAITJqHUB8J"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**div(A, B), equivalent to A / B**\n",
        "\n",
618
        "Element-wise multiplication on two sparse matrices or on a sparse matrix and a scalar, returning a sparse matrix. If both `A` and `B` are sparse matrices, both of them must have the same sparsity. And the returned matrix has the same order of non-zero entries as `A`."
619
620
621
622
623
624
625
626
      ],
      "metadata": {
        "id": "Xb2RU6H4UBCs"
      }
    },
    {
      "cell_type": "code",
      "source": [
627
628
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
629
        "val = torch.tensor([1., 2., 3.])\n",
630
631
632
633
634
635
636
637
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
        "i = torch.tensor([[1, 2, 1],\n",
        "                  [0, 0, 2]])\n",
        "val = torch.tensor([1., 3., 2.])\n",
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
638
        "\n",
639
640
641
642
643
        "print(\"A1 / 2:\")\n",
        "print((A1 / 2).to_dense())\n",
        "\n",
        "print(\"A1 / A2\")\n",
        "print((A1 / A2).to_dense())\n",
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"D1 / D2:\")\n",
        "print((D1 / D2).to_dense())\n",
        "\n",
        "print(\"D1 / 2:\")\n",
        "print((D1 / 2).to_dense())"
      ],
      "metadata": {
        "id": "TFB_UcmEUdr3"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**power(A, B), equivalent to A \\*\\* B**\n",
        "\n",
672
        "Element-wise power of a sparse matrix and a scalar, returning a sparse matrix."
673
674
675
676
677
678
679
680
      ],
      "metadata": {
        "id": "2lZbyTYUUgSi"
      }
    },
    {
      "cell_type": "code",
      "source": [
681
682
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
683
        "val = torch.tensor([1., 2., 3.])\n",
684
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "print(\"A ** 3:\")\n",
        "print((A ** 3).to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D = dglsp.diag(val)\n",
        "print(\"D:\")\n",
        "print(D.to_dense())\n",
        "\n",
        "print(\"D1 ** 2:\")\n",
        "print((D1 ** 2).to_dense())"
      ],
      "metadata": {
        "id": "ox-XxCnuUqAy"
      },
      "execution_count": null,
      "outputs": []
    },
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    {
      "cell_type": "markdown",
      "source": [
        "### *Broadcast operations*"
      ],
      "metadata": {
        "id": "VXBz4j5x_wQ4"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**sp_\\<op\\>_v(A, v)**\n",
        "\n",
        "Broadcast operations on a sparse matrix and a vector, returning a sparse matrix. `v` is broadcasted to the shape of `A` and then the operator is applied on the non-zero values of `A`. `<op>` can be add, sub, mul, and div. \n",
        "\n",
        "There are two cases regarding the shape of `v`:\n",
        "\n",
        "1. `v` is a vector of shape `(1, A.shape[1])` or `(A.shape[1])`. In this case, `v` is broadcasted on the row dimension of `A`.\n",
        "\n",
        "2. `v` is a vector of shape `(A.shape[0], 1)`. In this case, `v` is broadcasted on the column dimension of `A`."
      ],
      "metadata": {
        "id": "PtnyZdXHAZ6Z"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "i = torch.tensor([[1, 0, 2], [0, 3, 2]])\n",
        "val = torch.tensor([10, 20, 30])\n",
        "A = dglsp.spmatrix(i, val, shape=(3, 4))\n",
        "\n",
        "v1 = torch.tensor([1, 2, 3, 4])\n",
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "print(\"v1:\")\n",
        "print(v1)\n",
        "\n",
        "print(\"sp_add_v(A, v1)\")\n",
        "print(dglsp.sp_add_v(A, v1).to_dense())\n",
        "\n",
        "v2 = v1.reshape(1, -1)\n",
        "print(\"v2:\")\n",
        "print(v2)\n",
        "\n",
        "print(\"sp_add_v(A, v2)\")\n",
        "print(dglsp.sp_add_v(A, v2).to_dense())\n",
        "\n",
        "v3 = torch.tensor([1, 2, 3]).reshape(-1, 1)\n",
        "print(\"v3:\")\n",
        "print(v3)\n",
        "\n",
        "print(\"sp_add_v(A, v3)\")\n",
        "print(dglsp.sp_add_v(A, v3).to_dense())"
      ],
      "metadata": {
        "id": "xxf3s-uWBRR7"
      },
      "execution_count": null,
      "outputs": []
    },
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    {
      "cell_type": "markdown",
      "source": [
        "### *Reduce operations*\n",
        "\n",
        "All DGL sparse reduce operations only consider non-zero elements. To distinguish them from dense PyTorch reduce operations that consider zero elements, we use name `smax`, `smin` and `smean` (`s` stands for sparse)."
      ],
      "metadata": {
        "id": "TQJJlctZjYPv"
      }
    },
    {
      "cell_type": "code",
      "source": [
782
783
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
784
        "val = torch.tensor([1., 2., 3., 4.])\n",
785
        "A = dglsp.spmatrix(i, val)\n",
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        "print(A.T.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "# O1, O2 will have the same value.\n",
        "O1 = A.reduce(0, 'sum')\n",
        "O2 = A.sum(0)\n",
        "print(\"Reduce with reducer:sum along dim = 0:\")\n",
        "print(O1)\n",
        "print(\"\")\n",
        "\n",
        "# O3, O4 will have the same value.\n",
        "O3 = A.reduce(0, 'smax')\n",
        "O4 = A.smax(0)\n",
        "print(\"Reduce with reducer:max along dim = 0:\")\n",
        "print(O3)\n",
        "print(\"\")\n",
        "\n",
        "# O5, O6 will have the same value.\n",
        "O5 = A.reduce(0, 'smin')\n",
        "O6 = A.smin(0)\n",
        "print(\"Reduce with reducer:min along dim = 0:\")\n",
        "print(O5)\n",
        "print(\"\")\n",
        "\n",
        "# O7, O8 will have the same value.\n",
        "O7 = A.reduce(0, 'smean')\n",
        "O8 = A.smean(0)\n",
        "print(\"Reduce with reducer:smean along dim = 0:\")\n",
        "print(O7)\n",
        "print(\"\")"
      ],
      "metadata": {
        "id": "GhS49Js1jW4b"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Matrix transformations*"
      ],
      "metadata": {
        "id": "kanwnB7LOQui"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "*Sparse Matrix*"
      ],
      "metadata": {
        "id": "NiiXso9elM2p"
      }
    },
    {
      "cell_type": "code",
      "source": [
844
845
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
846
        "val = torch.tensor([1., 2., 3., 4.])\n",
847
        "A = dglsp.spmatrix(i, val)\n",
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"Get transpose of sparse matrix.\")\n",
        "print(A.T.to_dense())\n",
        "# Alias\n",
        "# A.transpose()\n",
        "# A.t()\n",
        "print(\"\")\n",
        "\n",
        "print(\"Get a sparse matrix with the negation of the original nonzero values.\")\n",
        "print(A.neg().to_dense())\n",
        "print(\"\")"
      ],
      "metadata": {
        "id": "qJcmZHmf-oTY"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Matrix multiplication*"
      ],
      "metadata": {
        "id": "4uQlDFb0Uzto"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**matmul(A, B), equivalent to A @ B**\n",
        "\n",
882
        "Matrix multiplication on sparse matrices and/or dense matrix. There are two cases as follows."
883
884
885
886
887
888
889
890
      ],
      "metadata": {
        "id": "THWE30v6WpAk"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
891
        "**SparseMatrix @ SparseMatrix -> SparseMatrix:**\n",
892
893
894
895
896
897
898
899
900
901
        "\n",
        "For a $L \\times M$ sparse matrix A and a $M \\times N$ sparse matrix B, the shape of `A @ B` will be $L \\times N$ sparse matrix."
      ],
      "metadata": {
        "id": "VxyykR-vX7lF"
      }
    },
    {
      "cell_type": "code",
      "source": [
902
903
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
904
        "val = torch.tensor([1., 2., 3.])\n",
905
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
906
907
908
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
909
910
        "i = torch.tensor([[0, 1, 2],\n",
        "                  [0, 2, 1]])\n",
911
        "val = torch.tensor([4., 5., 6.])\n",
912
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"A1 @ A2:\")\n",
        "print((A1 @ A2).to_dense())\n",
        "\n",
        "print(\"A1 @ D1:\")\n",
        "print((A1 @ D1).to_dense())\n",
        "\n",
        "print(\"D1 @ A1:\")\n",
        "print((D1 @ A1).to_dense())\n",
        "\n",
        "print(\"D1 @ D2:\")\n",
        "print((D1 @ D2).to_dense())"
      ],
      "metadata": {
        "id": "XRDFC2rOYQM4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
947
        "**SparseMatrix @ Tensor -> Tensor:**\n",
948
949
950
951
952
953
954
955
956
957
        "\n",
        "For a $L \\times M$ sparse matrix A and a $M \\times N$ dense matrix B, the shape of `A @ B` will be $L \\times N$ dense matrix."
      ],
      "metadata": {
        "id": "g13fG8nvaVOt"
      }
    },
    {
      "cell_type": "code",
      "source": [
958
959
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
960
        "val = torch.tensor([1., 2., 3.])\n",
961
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D = dglsp.diag(val)\n",
        "print(\"D:\")\n",
        "print(D.to_dense())\n",
        "\n",
        "X = torch.tensor([[11., 22.], [33., 44.], [55., 66.]])\n",
        "print(\"X:\")\n",
        "print(X)\n",
        "\n",
        "print(\"A @ X:\")\n",
        "print(A @ X)\n",
        "\n",
        "print(\"D @ X:\")\n",
        "print(D @ X)"
      ],
      "metadata": {
        "id": "FcQ-CnqdlgWF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "This operator also supports batched sparse-dense matrix multiplication. The sparse matrix A should have shape $L \\times M$, where the non-zero values are vectors of length $K$. The dense matrix B should have shape $M \\times N \\times K$. The output is a dense matrix of shape $L \\times N \\times K$."
      ],
      "metadata": {
        "id": "_KZiULLbmEZE"
      }
    },
    {
      "cell_type": "code",
      "source": [
998
999
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
1000
        "val = torch.tensor([[1., 1.], [2., 2.], [3., 3.]])\n",
1001
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "X = torch.tensor([[[1., 1.], [1., 2.]],\n",
        "                  [[1., 3.], [1., 4.]],\n",
        "                  [[1., 5.], [1., 6.]]])\n",
        "print(\"X:\")\n",
        "print(X)\n",
        "\n",
        "print(\"A @ X:\")\n",
        "print(A @ X)"
      ],
      "metadata": {
        "id": "ZUzXQk7Ab2wG"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
1023
        "**Sampled-Dense-Dense Matrix Multiplication (SDDMM)**\n",
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        "\n",
        "``sddmm`` matrix-multiplies two dense matrices X1 and X2, then elementwise-multiplies the result with sparse matrix A at the nonzero locations. This is designed for sparse matrix with scalar values.\n",
        "\n",
        "$$out = (X_1 @ X_2) * A$$\n",
        "\n",
        "For a $L \\times N$ sparse matrix A, a $L \\times M$ dense matrix X1 and a $M \\times N$ dense matrix X2, `sddmm(A, X1, X2)` will be a $L \\times N$ sparse matrix."
      ],
      "metadata": {
        "id": "qO_8f_vhPKtf"
      }
    },
    {
      "cell_type": "code",
      "source": [
1038
1039
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [2, 3, 3]])\n",
1040
        "val = torch.tensor([1., 2., 3.])\n",
1041
        "A = dglsp.spmatrix(i, val, (3, 4))\n",
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "X1 = torch.randn(3, 5)\n",
        "X2 = torch.randn(5, 4)\n",
        "print(\"X1:\")\n",
        "print(X1)\n",
        "print(\"X2:\")\n",
        "print(X2)\n",
        "\n",
        "O = dglsp.sddmm(A, X1, X2)\n",
        "print(\"dglsp.sddmm(A, X1, X2):\")\n",
        "print(O.to_dense())"
      ],
      "metadata": {
        "id": "3ZIFV0TgPhwH"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "This operator also supports batched sampled-dense-dense matrix multiplication. For a $L \\times N$ sparse matrix A with non-zero vector values of length $𝐾$, a $L \\times M \\times K$ dense matrix X1 and a $M \\times N \\times K$ dense matrix X2, `sddmm(A, X1, X2)` will be a $L \\times N \\times K$ sparse matrix."
      ],
      "metadata": {
        "id": "RmNmXU_ZqyF7"
      }
    },
    {
      "cell_type": "code",
      "source": [
1074
1075
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [2, 3, 3]])\n",
1076
        "val = torch.tensor([[1., 1.], [2., 2.], [3., 3.]])\n",
1077
        "A = dglsp.spmatrix(i, val, (3, 4))\n",
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "X1 = torch.randn(3, 5, 2)\n",
        "X2 = torch.randn(5, 4, 2)\n",
        "print(\"X1:\")\n",
        "print(X1)\n",
        "print(\"X2:\")\n",
        "print(X2)\n",
        "\n",
        "O = dglsp.sddmm(A, X1, X2)\n",
        "print(\"dglsp.sddmm(A, X1, X2):\")\n",
        "print(O.to_dense())"
      ],
      "metadata": {
        "id": "DuSAjamyrIO_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        "## Non-linear activation functions"
      ],
      "metadata": {
        "id": "fVkbTT28ZzPr"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Element-wise functions\n",
1111
        "\n",
1112
1113
1114
        "Most activation functions are element-wise and can be further grouped into two categories:\n",
        "\n",
        "**Sparse-preserving functions** such as `sin()`, `tanh()`, `sigmoid()`, `relu()`, etc. You can directly apply them on the `val` tensor of the sparse matrix and then recreate a new matrix of the same sparsity using `val_like`."
1115
1116
1117
1118
1119
      ],
      "metadata": {
        "id": "XuaNdFO7XG2r"
      }
    },
1120
1121
1122
    {
      "cell_type": "code",
      "source": [
1123
1124
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
1125
        "val = torch.randn(4)\n",
1126
        "A = dglsp.spmatrix(i, val)\n",
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
        "print(A.to_dense())\n",
        "\n",
        "print(\"Apply tanh.\")\n",
        "A_new = dglsp.val_like(A, torch.tanh(A.val))\n",
        "print(A_new.to_dense())"
      ],
      "metadata": {
        "id": "GZkCJJ0TX0cI"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Non-sparse-preserving functions** such as `exp()`, `cos()`, etc. You can first convert the sparse matrix to dense before applying the functions."
      ],
      "metadata": {
        "id": "i92lhMEnYas3"
      }
    },
    {
      "cell_type": "code",
      "source": [
1151
1152
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
1153
        "val = torch.randn(4)\n",
1154
        "A = dglsp.spmatrix(i, val)\n",
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        "print(A.to_dense())\n",
        "\n",
        "print(\"Apply exp.\")\n",
        "A_new = A.to_dense().exp()\n",
        "print(A_new)"
      ],
      "metadata": {
        "id": "sroJpzRNYZq5"
      },
      "execution_count": null,
      "outputs": []
    },
1167
1168
1169
    {
      "cell_type": "markdown",
      "source": [
1170
        "### Softmax\n",
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
        "\n",
        "Apply row-wise softmax to the nonzero entries of the sparse matrix."
      ],
      "metadata": {
        "id": "y8OQZReVXpo3"
      }
    },
    {
      "cell_type": "code",
      "source": [
1181
1182
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
1183
        "val = torch.tensor([1., 2., 3., 4.])\n",
1184
        "A = dglsp.spmatrix(i, val)\n",
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
        "\n",
        "print(A.softmax())\n",
        "print(\"In dense format:\")\n",
        "print(A.softmax().to_dense())\n",
        "print(\"\\n\")"
      ],
      "metadata": {
        "id": "CQaKgzCJULjt"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
1200
1201
        "## Exercise \\#1\n",
        "\n",
1202
1203
        "*Let's test what you've learned. Feel free to [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb).*\n",
        "\n",
1204
        "Given a sparse symmetrical adjacency matrix $A$, calculate its symmetrically normalized adjacency matrix: $$norm = \\bar{D}^{-\\frac{1}{2}}\\bar{A}\\bar{D}^{-\\frac{1}{2}}$$\n",
1205
        "\n",
1206
        "Where $\\bar{A} = A + I$, $I$ is the identity matrix, and $\\bar{D}$ is the diagonal node degree matrix of $\\bar{A}$."
1207
1208
      ],
      "metadata": {
1209
        "id": "1iBNlJVYz3zi"
1210
1211
1212
1213
1214
      }
    },
    {
      "cell_type": "code",
      "source": [
1215
1216
1217
        "i = torch.tensor([[0, 0, 1, 1, 2, 2, 3],\n",
        "                  [1, 3, 2, 5, 3, 5, 4]])\n",
        "asym_A = dglsp.spmatrix(i, shape=(6, 6))\n",
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        "# Step 1: create symmetrical adjacency matrix A from asym_A.\n",
        "# A =\n",
        "\n",
        "# Step 2: calculate A_hat from A.\n",
        "# A_hat =\n",
        "\n",
        "# Step 3: diagonal node degree matrix of A_hat\n",
        "# D_hat =\n",
        "\n",
        "# Step 4: calculate the norm from D_hat and A_hat.\n",
        "# norm = "
      ],
      "metadata": {
        "id": "0dDhfbJo0ByV"
      },
      "execution_count": null,
      "outputs": []
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1235
1236
1237
1238
    },
    {
      "cell_type": "markdown",
      "source": [
1239
        "## Exercise \\#2\n",
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
        "\n",
        "Let's implement a simplified version of the Graph Attention Network (GAT) layer.\n",
        "\n",
        "A GAT layer has two inputs: the adjacency matrix $A$ and the node input features $X$.  The idea of GAT layer is to update each node's representation with a weighted average of the node's own representation and its neighbors' representations.  In particular, when computing the output for node $i$, the GAT layer does the following:\n",
        "1. Compute the scores $S_{ij}$ representing the attention logit from neighbor $j$ to node $i$.  $S_{ij}$ is a function of $i$ and $j$'s input features $X_i$ and $X_j$: $$S_{ij} = LeakyReLU(X_i^\\top v_1 + X_j^\\top v_2)$$, where $v_1$ and $v_2$ are trainable vectors.\n",
        "2. Compute a softmax attention $R_{ij} = \\exp S_{ij} / \\left( \\sum_{j' \\in \\mathcal{N}_i} s_{ij'} \\right)$, where $\\mathcal{N}_j$ means the neighbors of $j$.  This means that $R$ is a row-wise softmax attention of $S$.\n",
        "3. Compute the weighted average $H_i = \\sum_{j' : j' \\in \\mathcal{N}_i} R_{j'} X_{j'} W$, where $W$ is a trainable matrix.\n",
        "\n",
        "The following code defined all the parameters you need but only completes step 1.  Could you implement step 2 and step 3?"
      ],
      "metadata": {
        "id": "yfEVQBUuI-cE"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import torch.nn as nn\n",
1258
        "import torch.nn.functional as F\n",
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        "\n",
        "class SimplifiedGAT(nn.Module):\n",
        "    def __init__(self, in_size, out_size):\n",
        "        super().__init__()\n",
        "\n",
        "        self.W = nn.Parameter(torch.randn(in_size, out_size))\n",
        "        self.v1 = nn.Parameter(torch.randn(in_size))\n",
        "        self.v2 = nn.Parameter(torch.randn(in_size))\n",
        "\n",
        "    def forward(self, A, X):\n",
        "        # A: A sparse matrix with size (N, N).  A[i, j] represent the edge from j to i.\n",
        "        # X: A dense matrix with size (N, D)\n",
        "        # Step 1: compute S[i, j]\n",
        "        Xv1 = X @ self.v1\n",
        "        Xv2 = X @ self.v2\n",
        "        s = F.leaky_relu(Xv1[A.col] + Xv2[A.row])\n",
        "        S = dglsp.val_like(A, s)\n",
        "\n",
        "        # Step 2: compute R[i, j] which is the row-wise attention of $S$.\n",
        "        # EXERCISE: replace the statement below.\n",
        "        R = S\n",
        "\n",
        "        # Step 3: compute H.\n",
        "        # EXERCISE: replace the statement below.\n",
        "        H = X\n",
        "\n",
        "        return H"
      ],
      "metadata": {
        "id": "pYrgSxq6La5c"
      },
      "execution_count": null,
      "outputs": []
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
    },
    {
      "cell_type": "code",
      "source": [
        "# Test:\n",
        "# Let's use the symmetric A created above.\n",
        "X = torch.randn(6, 20)\n",
        "module = SimplifiedGAT(20, 10)\n",
        "Y = module(A, X)"
      ],
      "metadata": {
        "id": "qjcXiidYCqGK"
      },
      "execution_count": null,
      "outputs": []
1307
1308
    }
  ]
1309
}