hgnn.ipynb 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "gpuClass": "standard"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# Hypergraph Neural Networks\n",
        "\n",
        "This tutorial illustrates what is hypergraph and how to build a Hypergraph Neural Network using DGL's sparse matrix APIs.\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/sparse/hgnn.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/sparse/hgnn.ipynb)"
      ],
      "metadata": {
        "id": "eiDu3XgReCt4"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Install required packages.\n",
        "import os\n",
        "import torch\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "# TODO(Steve): change to stable version.\n",
        "# Uncomment below to install required packages.\n",
        "#!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html > /dev/null\n",
        "#!pip install torchmetrics > /dev/null\n",
        "\n",
        "try:\n",
        "    import dgl\n",
        "    installed = True\n",
        "except ImportError:\n",
        "    installed = False\n",
        "print(\"DGL installed!\" if installed else \"Failed to install DGL!\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "__2tKqL0eaB0",
58
        "outputId": "5b5106f6-074b-42a5-fc4c-4936efd2cef8"
59
      },
60
      "execution_count": null,
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "DGL installed!\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Hypergraphs\n",
        "\n",
        "A [**hypergraph**](https://en.wikipedia.org/wiki/Hypergraph) consists of *nodes* and *hyperedges*.  Contrary to edges in graphs, a *hyperedge* can connect arbitrary number of nodes.  For instance, the following figure shows a hypergraph with 11 nodes and 5 hyperedges drawn in different colors.\n",
        "![](https://data.dgl.ai/tutorial/img/hgnn/hypergraph4.PNG)\n",
        "\n",
79
80
        "Hypergraphs are particularly useful when the relationships between data points within the dataset is not binary.  For instance, more than two products can be co-purchased together in an e-commerce system, so the relationship of co-purchase is $n$-ary rather than binary, and therefore it is better described as a hypergraph rather than a normal graph.\n",
        "\n",
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        "A hypergraph is usually characterized by its *incidence matrix* $H$, whose rows represent nodes and columns represent hyperedges.  An entry $H_{ij}$ is 1 if hyperedge $j$ includes node $i$, or 0 otherwise.  For example, the hypergraph in the figure above can be characterized by a $11 \\times 5$ matrix as follows:\n",
        "\n",
        "$$\n",
        "H = \\begin{bmatrix}\n",
        "1 & 0 & 0 & 0 & 0 \\\\\n",
        "1 & 0 & 0 & 0 & 0 \\\\\n",
        "1 & 1 & 0 & 1 & 1 \\\\\n",
        "0 & 0 & 1 & 0 & 0 \\\\\n",
        "0 & 1 & 0 & 0 & 0 \\\\\n",
        "1 & 0 & 1 & 1 & 1 \\\\\n",
        "0 & 0 & 1 & 0 & 0 \\\\\n",
        "0 & 1 & 0 & 1 & 0 \\\\\n",
        "0 & 1 & 0 & 1 & 0 \\\\\n",
        "0 & 0 & 1 & 0 & 1 \\\\\n",
        "0 & 0 & 0 & 0 & 1 \\\\\n",
        "\\end{bmatrix}\n",
        "$$\n",
        "\n",
        "One can construct the hypergraph incidence matrix by specifying two tensors `nodes` and `hyperedges`, where the node ID `nodes[i]` belongs to the hyperedge ID `hyperedges[i]` for all `i`.  In the case above, the incidence matrix can be constructed below.\n"
      ],
      "metadata": {
        "id": "unL_mAj-TqC6"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import dgl.sparse as dglsp\n",
        "import torch\n",
        "\n",
111
112
113
        "H = dglsp.spmatrix(\n",
        "    torch.LongTensor([[0, 1, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10],\n",
        "                      [0, 0, 0, 1, 3, 4, 2, 1, 0, 2, 3, 4, 2, 1, 3, 1, 3, 2, 4, 4]])\n",
114
115
116
117
118
119
120
121
122
        ")\n",
        "\n",
        "print(H.to_dense())"
      ],
      "metadata": {
        "id": "I_cExvtIJD1F",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
123
        "outputId": "a1a576f6-1559-479c-9f3e-93e41a56833d"
124
      },
125
      "execution_count": null,
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "tensor([[1., 0., 0., 0., 0.],\n",
            "        [1., 0., 0., 0., 0.],\n",
            "        [1., 1., 0., 1., 1.],\n",
            "        [0., 0., 1., 0., 0.],\n",
            "        [0., 1., 0., 0., 0.],\n",
            "        [1., 0., 1., 1., 1.],\n",
            "        [0., 0., 1., 0., 0.],\n",
            "        [0., 1., 0., 1., 0.],\n",
            "        [0., 1., 0., 1., 0.],\n",
            "        [0., 0., 1., 0., 1.],\n",
            "        [0., 0., 0., 0., 1.]])\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "The degree of a node in a hypergraph is defined as the number of hyperedges including the node.  Similarly, the degree of a hyperedge in a hypergraph is defined as the number of nodes included by the hyperedge.  In the example above, the hyperedge degrees can be computed by the sum of row vectors (i.e. all 4), while the node degree can be computed by the sum of column vectors."
      ],
      "metadata": {
        "id": "p-shCPQPHvBB"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "node_degrees = H.sum(1)\n",
        "print(\"Node degrees\", node_degrees)\n",
        "\n",
        "hyperedge_degrees = H.sum(0)\n",
        "print(\"Hyperedge degrees\", hyperedge_degrees)"
      ],
      "metadata": {
        "id": "wjKm9gkTOnU9",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
169
        "outputId": "ffe2c441-8c2c-48a7-cef2-4ef6e96548ec"
170
      },
171
      "execution_count": null,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Node degrees tensor([1., 1., 4., 1., 1., 4., 1., 2., 2., 2., 1.])\n",
            "Hyperedge degrees tensor([4., 4., 4., 4., 4.])\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "\n",
        "## Hypergraph Neural Network (HGNN) Layer\n",
        "\n",
189
        "The [HGNN layer](https://arxiv.org/pdf/1809.09401.pdf) is defined as:\n",
190
191
192
        "\n",
        "$$f(X^{(l)}, H; W^{(l)}) = \\sigma(L X^{(l)} W^{(l)})$$$$L = D_v^{-1/2} H B D_e^{-1} H^\\top D_v^{-1/2}$$\n",
        "\n",
193
194
195
196
        "where\n",
        "* $H \\in \\mathbb{R}^{N \\times M}$ is the incidence matrix of hypergraph with $N$ nodes and $M$ hyperedges.\n",
        "* $D_v \\in \\mathbb{R}^{N \\times N}$ is a diagonal matrix representing node degrees, whose $i$-th diagonal element is $\\sum_{j=1}^M H_{ij}$.\n",
        "* $D_e \\in \\mathbb{R}^{M \\times M}$ is a diagonal matrix representing hyperedge degrees, whose $j$-th diagonal element is $\\sum_{i=1}^N H_{ij}$.\n",
197
198
199
        "* $B \\in \\mathbb{R}^{M \\times M}$ is a diagonal matrix representing the hyperedge weights, whose $j$-th diagonal element is the weight of $j$-th hyperedge.  In our example, $B$ is an identity matrix.\n",
        "\n",
        "The following code builds a two-layer HGNN."
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
      ],
      "metadata": {
        "id": "7kxrINkVHrAi"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import dgl.sparse as dglsp\n",
        "import torch\n",
        "import torch.nn as nn\n",
        "import torch.nn.functional as F\n",
        "import tqdm\n",
        "from dgl.data import CoraGraphDataset\n",
        "from torchmetrics.functional import accuracy\n",
        "\n",
        "\n",
        "class HGNN(nn.Module):\n",
        "    def __init__(self, H, in_size, out_size, hidden_dims=16):\n",
        "        super().__init__()\n",
        "\n",
221
222
        "        self.W1 = nn.Linear(in_size, hidden_dims)\n",
        "        self.W2 = nn.Linear(hidden_dims, out_size)\n",
223
224
225
226
227
        "        self.dropout = nn.Dropout(0.5)\n",
        "\n",
        "        ###########################################################\n",
        "        # (HIGHLIGHT) Compute the Laplacian with Sparse Matrix API\n",
        "        ###########################################################\n",
228
229
230
231
232
233
234
235
236
        "        # Compute node degree.\n",
        "        d_V = H.sum(1)\n",
        "        # Compute edge degree.\n",
        "        d_E = H.sum(0)\n",
        "        # Compute the inverse of the square root of the diagonal D_v.\n",
        "        D_v_invsqrt = dglsp.diag(d_V**-0.5)\n",
        "        # Compute the inverse of the diagonal D_e.\n",
        "        D_e_inv = dglsp.diag(d_E**-1)\n",
        "        # In our example, B is an identity matrix.\n",
237
        "        n_edges = d_E.shape[0]\n",
238
239
240
        "        B = dglsp.identity((n_edges, n_edges))\n",
        "        # Compute Laplacian from the equation above.\n",
        "        self.L = D_v_invsqrt @ H @ B @ D_e_inv @ H.T @ D_v_invsqrt\n",
241
242
        "\n",
        "    def forward(self, X):\n",
243
        "        X = self.L @ self.W1(self.dropout(X))\n",
244
        "        X = F.relu(X)\n",
245
246
247
248
249
250
        "        X = self.L @ self.W2(self.dropout(X))\n",
        "        return X"
      ],
      "metadata": {
        "id": "58WnPtPvT2mx"
      },
251
      "execution_count": null,
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Loading Data\n",
        "\n",
        "We use Cora citation network in our example.  But instead of using the original \"cite\" relationship between papers, we consider the \"co-cite\" relationship between papers.  We build a hypergraph from the original citation network where for each paper we construct a hyperedge that includes all the other papers it cited, as well as the paper itself.\n",
        "\n",
        "![](https://data.dgl.ai/tutorial/img/hgnn/equiv.PNG)\n",
        "\n",
        "Note that a hypergraph constructed this way has an incidence matrix exactly identical to the adjacency matrix of the original graph (plus an identity matrix for self-loops).  This is because each hyperedge has a one-to-one correspondence to each paper.  So we can directly take the graph's adjacency matrix and add an identity matrix to it, and we use it as the hypergraph's incidence matrix."
      ],
      "metadata": {
        "id": "bPrOHVaGwUD0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "def load_data():\n",
        "    dataset = CoraGraphDataset()\n",
274
        "\n",
275
        "    graph = dataset[0]\n",
276
277
        "    indices = torch.stack(graph.edges())\n",
        "    H = dglsp.spmatrix(indices)\n",
278
279
280
281
282
283
284
285
286
287
288
289
        "    H = H + dglsp.identity(H.shape)\n",
        "\n",
        "    X = graph.ndata[\"feat\"]\n",
        "    Y = graph.ndata[\"label\"]\n",
        "    train_mask = graph.ndata[\"train_mask\"]\n",
        "    val_mask = graph.ndata[\"val_mask\"]\n",
        "    test_mask = graph.ndata[\"test_mask\"]\n",
        "    return H, X, Y, dataset.num_classes, train_mask, val_mask, test_mask"
      ],
      "metadata": {
        "id": "qI0j1J9pwTFg"
      },
290
      "execution_count": null,
291
292
293
294
295
296
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Training and Evaluation\n",
297
        "\n",
298
299
300
301
302
303
304
305
306
        "Now we can write the training and evaluation functions as follows."
      ],
      "metadata": {
        "id": "--rq1-r7wMST"
      }
    },
    {
      "cell_type": "code",
      "source": [
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        "def train(model, optimizer, X, Y, train_mask):\n",
        "    model.train()\n",
        "    Y_hat = model(X)\n",
        "    loss = F.cross_entropy(Y_hat[train_mask], Y[train_mask])\n",
        "    optimizer.zero_grad()\n",
        "    loss.backward()\n",
        "    optimizer.step()\n",
        "\n",
        "\n",
        "def evaluate(model, X, Y, val_mask, test_mask, num_classes):\n",
        "    model.eval()\n",
        "    Y_hat = model(X)\n",
        "    val_acc = accuracy(\n",
        "        Y_hat[val_mask], Y[val_mask], task=\"multiclass\", num_classes=num_classes\n",
        "    )\n",
        "    test_acc = accuracy(\n",
        "        Y_hat[test_mask],\n",
        "        Y[test_mask],\n",
        "        task=\"multiclass\",\n",
        "        num_classes=num_classes,\n",
        "    )\n",
        "    return val_acc, test_acc\n",
        "\n",
        "\n",
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        "H, X, Y, num_classes, train_mask, val_mask, test_mask = load_data()\n",
        "model = HGNN(H, X.shape[1], num_classes)\n",
        "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
        "\n",
        "with tqdm.trange(500) as tq:\n",
        "    for epoch in tq:\n",
        "        train(model, optimizer, X, Y, train_mask)\n",
        "        val_acc, test_acc = evaluate(\n",
        "            model, X, Y, val_mask, test_mask, num_classes\n",
        "        )\n",
        "        tq.set_postfix(\n",
        "            {\n",
        "                \"Val acc\": f\"{val_acc:.5f}\",\n",
        "                \"Test acc\": f\"{test_acc:.5f}\",\n",
        "            },\n",
        "            refresh=False,\n",
        "        )\n",
        "\n",
        "print(f\"Test acc: {test_acc:.3f}\")"
350
351
352
353
354
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
355
356
        "id": "IfEc6JRXwHPt",
        "outputId": "0172578a-6a1b-49eb-adcb-77ee1a949186"
357
      },
358
      "execution_count": null,
359
360
361
362
363
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
364
365
366
            "Downloading /root/.dgl/cora_v2.zip from https://data.dgl.ai/dataset/cora_v2.zip...\n",
            "Extracting file to /root/.dgl/cora_v2\n",
            "Finished data loading and preprocessing.\n",
367
368
369
370
371
372
373
            "  NumNodes: 2708\n",
            "  NumEdges: 10556\n",
            "  NumFeats: 1433\n",
            "  NumClasses: 7\n",
            "  NumTrainingSamples: 140\n",
            "  NumValidationSamples: 500\n",
            "  NumTestSamples: 1000\n",
374
            "Done saving data into cached files.\n"
375
376
377
378
379
380
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
381
            "100%|██████████| 500/500 [00:57<00:00,  8.70it/s, Val acc=0.77800, Test acc=0.78100]"
382
383
384
385
386
387
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
388
            "Test acc: 0.781\n"
389
390
391
392
393
394
395
396
397
398
399
400
401
402
          ]
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
403
        "For the complete example of HGNN, please refer to [here](https://github.com/dmlc/dgl/blob/master/examples/sparse/hgnn.py)."
404
405
406
407
408
409
      ],
      "metadata": {
        "id": "59pCzjpBOyEW"
      }
    }
  ]
410
}