test_softmax.py 1.11 KB
Newer Older
1
2
3
4
5
6
7
8
import sys

import backend as F

import dgl
import pytest
import torch

9
from dgl.sparse import create_from_coo, softmax
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

# TODO(#4818): Skipping tests on win.
if not sys.platform.startswith("linux"):
    pytest.skip("skipping tests on win", allow_module_level=True)


@pytest.mark.parametrize("val_D", [None, 2])
@pytest.mark.parametrize("csr", [True, False])
def test_softmax(val_D, csr):
    dev = F.ctx()
    row = torch.tensor([0, 0, 1, 1]).to(dev)
    col = torch.tensor([0, 2, 1, 2]).to(dev)
    nnz = len(row)
    if val_D is None:
        val = torch.randn(nnz).to(dev)
    else:
        val = torch.randn(nnz, val_D).to(dev)

    val_sparse = val.clone().requires_grad_()
    A = create_from_coo(row, col, val_sparse)

    if csr:
        # Test CSR
        A.csr()

    A_max = softmax(A)
    g = dgl.graph((col, row), num_nodes=max(A.shape))
    val_g = val.clone().requires_grad_()
    score = dgl.nn.functional.edge_softmax(g, val_g)
    assert torch.allclose(A_max.val, score)

    grad = torch.randn_like(score).to(dev)
    A_max.val.backward(grad)
    score.backward(grad)
    assert torch.allclose(A.val.grad, val_g.grad)