train_cv.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
import tqdm
from _thread import start_new_thread
from functools import wraps
from dgl.data import RedditDataset
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel

class SAGEConvWithCV(nn.Module):
    def __init__(self, in_feats, out_feats, activation):
        super().__init__()
        self.W = nn.Linear(in_feats * 2, out_feats)
        self.activation = activation
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain('relu')
        nn.init.xavier_uniform_(self.W.weight, gain=gain)
        nn.init.constant_(self.W.bias, 0)

    def forward(self, block, H, HBar=None):
        if self.training:
            with block.local_scope():
                H_src, H_dst = H
                HBar_src, agg_HBar_dst = HBar
                block.dstdata['agg_hbar'] = agg_HBar_dst
                block.srcdata['hdelta'] = H_src - HBar_src
                block.update_all(fn.copy_u('hdelta', 'm'), fn.mean('m', 'hdelta_new'))
                h_neigh = block.dstdata['agg_hbar'] + block.dstdata['hdelta_new']
                h = self.W(th.cat([H_dst, h_neigh], 1))
                if self.activation is not None:
                    h = self.activation(h)
                return h
        else:
            with block.local_scope():
                H_src, H_dst = H
                block.srcdata['h'] = H_src
                block.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'h_new'))
                h_neigh = block.dstdata['h_new']
                h = self.W(th.cat([H_dst, h_neigh], 1))
                if self.activation is not None:
                    h = self.activation(h)
                return h

class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(SAGEConvWithCV(in_feats, n_hidden, activation))
        for i in range(1, n_layers - 1):
            self.layers.append(SAGEConvWithCV(n_hidden, n_hidden, activation))
        self.layers.append(SAGEConvWithCV(n_hidden, n_classes, None))

    def forward(self, blocks):
        h = blocks[0].srcdata['features']
        updates = []
        for layer, block in zip(self.layers, blocks):
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
            h_dst = h[:block.number_of_dst_nodes()]
            hbar_src = block.srcdata['hist']
            agg_hbar_dst = block.dstdata['agg_hist']
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst), (hbar_src, agg_hbar_dst))
            block.dstdata['h_new'] = h
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        ys = []
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

            for start in tqdm.trange(0, len(nodes), batch_size):
                end = start + batch_size
                batch_nodes = nodes[start:end]
                block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
112
                block = block.to(device)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                induced_nodes = block.srcdata[dgl.NID]

                h = x[induced_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))

                y[start:end] = h.cpu()

            ys.append(y)
            x = y
        return y, ys



class NeighborSampler(object):
    def __init__(self, g, fanouts):
        self.g = g
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(seeds)
        blocks = []
        hist_blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
            hist_frontier = dgl.in_subgraph(self.g, seeds)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            hist_block = dgl.to_block(hist_frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
            hist_blocks.insert(0, hist_block)
        return blocks, hist_blocks

def prepare_mp(g):
    """
    Explicitly materialize the CSR, CSC and COO representation of the given graph
    so that they could be shared via copy-on-write to sampler workers and GPU
    trainers.

    This is a workaround before full shared memory support on heterogeneous graphs.
    """
    g.in_degree(0)
    g.out_degree(0)
    g.find_edges([0])

def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, labels, val_mask, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        inputs = g.ndata['features']
        pred, _ = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_mask], labels[val_mask])

def load_subtensor(g, labels, blocks, hist_blocks, dev_id, aggregation_on_device=False):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
189
190
191
192
    blocks[0].srcdata['features'] = g.ndata['features'][blocks[0].srcdata[dgl.NID]]
    blocks[-1].dstdata['label'] = labels[blocks[-1].dstdata[dgl.NID]]
    ret_blocks = [] 
    ret_hist_blocks = []
193
194
    for i, (block, hist_block) in enumerate(zip(blocks, hist_blocks)):
        hist_col = 'features' if i == 0 else 'hist_%d' % i
195
        block.srcdata['hist'] = g.ndata[hist_col][block.srcdata[dgl.NID]]
196
197
198
199

        # Aggregate history
        hist_block.srcdata['hist'] = g.ndata[hist_col][hist_block.srcdata[dgl.NID]]
        if aggregation_on_device:
200
            hist_block = hist_block.to(dev_id)
201
        hist_block.update_all(fn.copy_u('hist', 'm'), fn.mean('m', 'agg_hist'))
202
203

        block = block.to(dev_id)
204
        if not aggregation_on_device:
205
206
207
208
209
            hist_block = hist_block.to(dev_id)
        block.dstdata['agg_hist'] = hist_block.dstdata['agg_hist']
        ret_blocks.append(block)
        ret_hist_blocks.append(hist_block)
    return ret_blocks, ret_hist_blocks
210
211
212
213
214
215
216
217
218
219
220
221

def init_history(g, model, dev_id):
    with th.no_grad():
        history = model.inference(g, g.ndata['features'], 1000, dev_id)[1]
        for layer in range(args.num_layers + 1):
            if layer > 0:
                hist_col = 'hist_%d' % layer
                g.ndata['hist_%d' % layer] = history[layer - 1]

def update_history(g, blocks):
    with th.no_grad():
        for i, block in enumerate(blocks):
222
            ids = block.dstdata[dgl.NID].cpu()
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
            hist_col = 'hist_%d' % (i + 1)

            h_new = block.dstdata['h_new'].cpu()
            g.ndata[hist_col][ids] = h_new

def run(args, dev_id, data):
    dropout = 0.2

    th.cuda.set_device(dev_id)

    # Unpack data
    train_mask, val_mask, in_feats, labels, n_classes, g = data
    train_nid = th.LongTensor(np.nonzero(train_mask)[0])
    val_nid = th.LongTensor(np.nonzero(val_mask)[0])
    train_mask = th.BoolTensor(train_mask)
    val_mask = th.BoolTensor(val_mask)

    # Create sampler
    sampler = NeighborSampler(g, [int(_) for _ in args.fan_out.split(',')])

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers_per_gpu)

    # Define model
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu)

    # Move the model to GPU and define optimizer
    model = model.to(dev_id)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Compute history tensor and their aggregation before training on CPU
    model.eval()
    init_history(g, model, dev_id)
    model.train()

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
        model.train()
        for step, (blocks, hist_blocks) in enumerate(dataloader):
            tic_step = time.time()

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]
            seeds = blocks[-1].dstdata[dgl.NID]

280
            blocks, hist_blocks = load_subtensor(g, labels, blocks, hist_blocks, dev_id, True)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

            # forward
            batch_pred = model(blocks)
            # update history
            update_history(g, blocks)
            # compute loss
            batch_labels = blocks[-1].dstdata['label']
            loss = loss_fcn(batch_pred, batch_labels)
            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            iter_tput.append(len(seeds) / (time.time() - tic_step))
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:])))

        toc = time.time()
        print('Epoch Time(s): {:.4f}'.format(toc - tic))
        if epoch >= 5:
            avg += toc - tic
        if epoch % args.eval_every == 0 and epoch != 0:
            model.eval()
            eval_acc = evaluate(model, g, labels, val_nid, args.val_batch_size, dev_id)
            print('Eval Acc {:.4f}'.format(eval_acc))

    print('Avg epoch time: {}'.format(avg / (epoch - 4)))

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
    argparser.add_argument('--gpu', type=str, default='0')
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
    argparser.add_argument('--fan-out', type=str, default='1,1')
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--val-batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
    argparser.add_argument('--num-workers-per-gpu', type=int, default=0)
    args = argparser.parse_args()

    # load reddit data
    data = RedditDataset(self_loop=True)
    train_mask = data.train_mask
    val_mask = data.val_mask
    features = th.Tensor(data.features)
    in_feats = features.shape[1]
    labels = th.LongTensor(data.labels)
    n_classes = data.num_labels
    # Construct graph
    g = dgl.graph(data.graph.all_edges())
    g.ndata['features'] = features
    prepare_mp(g)
    # Pack data
    data = train_mask, val_mask, in_feats, labels, n_classes, g

    run(args, int(args.gpu), data)