sudoku_solver.py 1.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import urllib.request

import torch
import numpy as np
from sudoku_data import _basic_sudoku_graph


def solve_sudoku(puzzle):
    """
    Solve sudoku puzzle using RRN.
    :param puzzle: an array-like data with shape [9, 9], blank positions are filled with 0
    :return: a [9, 9] shaped numpy array
    """
    puzzle = np.array(puzzle, dtype=np.long).reshape([-1])
    model_path = 'ckpt'
    if not os.path.exists(model_path):
        os.mkdir(model_path)

    model_filename = os.path.join(model_path, 'rrn-sudoku.pkl')
    if not os.path.exists(model_filename):
        print('Downloading model...')
        url = 'https://s3.us-east-2.amazonaws.com/dgl.ai/models/rrn-sudoku.pkl'
        urllib.request.urlretrieve(url, model_filename)

    model = torch.load(model_filename, map_location='cpu')

    g = _basic_sudoku_graph()
    sudoku_indices = np.arange(0, 81)
    rows = sudoku_indices // 9
    cols = sudoku_indices % 9

    g.ndata['row'] = torch.tensor(rows, dtype=torch.long)
    g.ndata['col'] = torch.tensor(cols, dtype=torch.long)
    g.ndata['q'] = torch.tensor(puzzle, dtype=torch.long)
    g.ndata['a'] = torch.tensor(puzzle, dtype=torch.long)

    pred, _ = model(g, False)
    pred = pred.cpu().data.numpy().reshape([9, 9])
    return pred


if __name__ == '__main__':
    q = [
        [9, 7, 0, 4, 0, 2, 0, 5, 3],
        [0, 4, 6, 0, 9, 0, 0, 0, 0],
        [0, 0, 8, 6, 0, 1, 4, 0, 7],
        [0, 0, 0, 0, 0, 3, 5, 0, 0],
        [7, 6, 0, 0, 0, 0, 0, 8, 2],
        [0, 0, 2, 8, 0, 0, 0, 0, 0],
        [6, 0, 5, 1, 0, 7, 2, 0, 0],
        [0, 0, 0, 0, 6, 0, 7, 4, 0],
        [4, 3, 0, 2, 0, 9, 0, 6, 1]
    ]

    answer = solve_sudoku(q)
    print(answer)