test_pickle.py 6.34 KB
Newer Older
1
import networkx as nx
Gan Quan's avatar
Gan Quan committed
2
import dgl
3
import dgl.contrib as contrib
Gan Quan's avatar
Gan Quan committed
4
5
6
from dgl.frame import Frame, FrameRef, Column
from dgl.graph_index import create_graph_index
from dgl.utils import toindex
7
8
import backend as F
import dgl.function as fn
Gan Quan's avatar
Gan Quan committed
9
10
11
import pickle
import io

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch

def _assert_is_identical(g, g2):
    assert g.is_multigraph == g2.is_multigraph
    assert g.is_readonly == g2.is_readonly
    assert g.number_of_nodes() == g2.number_of_nodes()
    src, dst = g.all_edges()
    src2, dst2 = g2.all_edges()
    assert F.array_equal(src, src2)
    assert F.array_equal(dst, dst2)

    assert len(g.ndata) == len(g2.ndata)
    assert len(g.edata) == len(g2.edata)
    for k in g.ndata:
        assert F.allclose(g.ndata[k], g2.ndata[k])
    for k in g.edata:
        assert F.allclose(g.edata[k], g2.edata[k])

def _assert_is_identical_nodeflow(nf1, nf2):
    assert nf1.is_multigraph == nf2.is_multigraph
    assert nf1.is_readonly == nf2.is_readonly
    assert nf1.number_of_nodes() == nf2.number_of_nodes()
    src, dst = nf1.all_edges()
    src2, dst2 = nf2.all_edges()
    assert F.array_equal(src, src2)
    assert F.array_equal(dst, dst2)

    assert nf1.num_layers == nf2.num_layers
    for i in range(nf1.num_layers):
        assert nf1.layer_size(i) == nf2.layer_size(i)
        assert nf1.layers[i].data.keys() == nf2.layers[i].data.keys()
        for k in nf1.layers[i].data:
            assert F.allclose(nf1.layers[i].data[k], nf2.layers[i].data[k])
    assert nf1.num_blocks == nf2.num_blocks
    for i in range(nf1.num_blocks):
        assert nf1.block_size(i) == nf2.block_size(i)
        assert nf1.blocks[i].data.keys() == nf2.blocks[i].data.keys()
        for k in nf1.blocks[i].data:
            assert F.allclose(nf1.blocks[i].data[k], nf2.blocks[i].data[k])

def _assert_is_identical_batchedgraph(bg1, bg2):
    _assert_is_identical(bg1, bg2)
    assert bg1.batch_size == bg2.batch_size
    assert bg1.batch_num_nodes == bg2.batch_num_nodes
    assert bg1.batch_num_edges == bg2.batch_num_edges

def _assert_is_identical_index(i1, i2):
    assert i1.slice_data() == i2.slice_data()
    assert F.array_equal(i1.tousertensor(), i2.tousertensor())

Gan Quan's avatar
Gan Quan committed
62
63
64
65
66
67
68
69
70
71
def _reconstruct_pickle(obj):
    f = io.BytesIO()
    pickle.dump(obj, f)
    f.seek(0)
    obj = pickle.load(f)
    f.close()

    return obj

def test_pickling_index():
72
    # normal index
Gan Quan's avatar
Gan Quan committed
73
74
75
76
    i = toindex([1, 2, 3])
    i.tousertensor()
    i.todgltensor() # construct a dgl tensor which is unpicklable
    i2 = _reconstruct_pickle(i)
77
    _assert_is_identical_index(i, i2)
Gan Quan's avatar
Gan Quan committed
78

79
80
81
82
    # slice index
    i = toindex(slice(5, 10))
    i2 = _reconstruct_pickle(i)
    _assert_is_identical_index(i, i2)
Gan Quan's avatar
Gan Quan committed
83
84
85
86
87
88
89
90
91
92
93
94

def test_pickling_graph_index():
    gi = create_graph_index()
    gi.add_nodes(3)
    src_idx = toindex([0, 0])
    dst_idx = toindex([1, 2])
    gi.add_edges(src_idx, dst_idx)

    gi2 = _reconstruct_pickle(gi)

    assert gi2.number_of_nodes() == gi.number_of_nodes()
    src_idx2, dst_idx2, _ = gi2.edges()
95
96
    assert F.array_equal(src_idx.tousertensor(), src_idx2.tousertensor())
    assert F.array_equal(dst_idx.tousertensor(), dst_idx2.tousertensor())
Gan Quan's avatar
Gan Quan committed
97
98
99


def test_pickling_frame():
100
101
    x = F.randn((3, 7))
    y = F.randn((3, 5))
Gan Quan's avatar
Gan Quan committed
102
103
104
105

    c = Column(x)

    c2 = _reconstruct_pickle(c)
106
    assert F.allclose(c.data, c2.data)
Gan Quan's avatar
Gan Quan committed
107
108
109
110

    fr = Frame({'x': x, 'y': y})

    fr2 = _reconstruct_pickle(fr)
111
112
    assert F.allclose(fr2['x'].data, x)
    assert F.allclose(fr2['y'].data, y)
Gan Quan's avatar
Gan Quan committed
113
114
115
116
117
118
119
120
121
122
123

    fr = Frame()


def _global_message_func(nodes):
    return {'x': nodes.data['x']}

def test_pickling_graph():
    # graph structures and frames are pickled
    g = dgl.DGLGraph()
    g.add_nodes(3)
124
125
    src = F.tensor([0, 0])
    dst = F.tensor([1, 2])
Gan Quan's avatar
Gan Quan committed
126
127
    g.add_edges(src, dst)

128
129
130
131
    x = F.randn((3, 7))
    y = F.randn((3, 5))
    a = F.randn((2, 6))
    b = F.randn((2, 4))
Gan Quan's avatar
Gan Quan committed
132
133
134
135
136
137
138
139

    g.ndata['x'] = x
    g.ndata['y'] = y
    g.edata['a'] = a
    g.edata['b'] = b

    # registered functions are pickled
    g.register_message_func(_global_message_func)
140
    reduce_func = fn.sum('x', 'x')
Gan Quan's avatar
Gan Quan committed
141
142
143
144
145
146
147
148
149
150
151
152
    g.register_reduce_func(reduce_func)

    # custom attributes should be pickled
    g.foo = 2

    new_g = _reconstruct_pickle(g)

    _assert_is_identical(g, new_g)
    assert new_g.foo == 2
    assert new_g._message_func == _global_message_func
    assert isinstance(new_g._reduce_func, type(reduce_func))
    assert new_g._reduce_func._name == 'sum'
153
    assert new_g._reduce_func.reduce_op == F.sum
Gan Quan's avatar
Gan Quan committed
154
155
156
157
158
159
    assert new_g._reduce_func.msg_field == 'x'
    assert new_g._reduce_func.out_field == 'x'

    # test batched graph with partial set case
    g2 = dgl.DGLGraph()
    g2.add_nodes(4)
160
161
    src2 = F.tensor([0, 1])
    dst2 = F.tensor([2, 3])
Gan Quan's avatar
Gan Quan committed
162
163
    g2.add_edges(src2, dst2)

164
165
166
167
    x2 = F.randn((4, 7))
    y2 = F.randn((3, 5))
    a2 = F.randn((2, 6))
    b2 = F.randn((2, 4))
Gan Quan's avatar
Gan Quan committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    g2.ndata['x'] = x2
    g2.nodes[[0, 1, 3]].data['y'] = y2
    g2.edata['a'] = a2
    g2.edata['b'] = b2

    bg = dgl.batch([g, g2])

    bg2 = _reconstruct_pickle(bg)

    _assert_is_identical(bg, bg2)
    new_g, new_g2 = dgl.unbatch(bg2)
    _assert_is_identical(g, new_g)
    _assert_is_identical(g2, new_g2)

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    # readonly graph
    g = dgl.DGLGraph([(0, 1), (1, 2)], readonly=True)
    new_g = _reconstruct_pickle(g)
    _assert_is_identical(g, new_g)

    # multigraph
    g = dgl.DGLGraph([(0, 1), (0, 1), (1, 2)], multigraph=True)
    new_g = _reconstruct_pickle(g)
    _assert_is_identical(g, new_g)

    # readonly multigraph
    g = dgl.DGLGraph([(0, 1), (0, 1), (1, 2)], multigraph=True, readonly=True)
    new_g = _reconstruct_pickle(g)
    _assert_is_identical(g, new_g)

198
199
200
201
202
203
204
205
206
def test_pickling_nodeflow():
    elist = [(0, 1), (1, 2), (2, 3), (3, 0)]
    g = dgl.DGLGraph(elist, readonly=True)
    g.ndata['x'] = F.randn((4, 5))
    g.edata['y'] = F.randn((4, 3))
    nf = contrib.sampling.sampler.create_full_nodeflow(g, 5)
    nf.copy_from_parent()  # add features
    new_nf = _reconstruct_pickle(nf)
    _assert_is_identical_nodeflow(nf, new_nf)
Gan Quan's avatar
Gan Quan committed
207

208
209
210
211
212
213
214
215
216
def test_pickling_batched_graph():
    glist = [nx.path_graph(i + 5) for i in range(5)]
    glist = [dgl.DGLGraph(g) for g in glist]
    bg = dgl.batch(glist)
    bg.ndata['x'] = F.randn((35, 5))
    bg.edata['y'] = F.randn((60, 3))
    new_bg = _reconstruct_pickle(bg)
    _assert_is_identical_batchedgraph(bg, new_bg)

Gan Quan's avatar
Gan Quan committed
217
218
219
220
221
if __name__ == '__main__':
    test_pickling_index()
    test_pickling_graph_index()
    test_pickling_frame()
    test_pickling_graph()
222
    test_pickling_nodeflow()
223
    test_pickling_batched_graph()