unsupervised.py 4.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch as th
import dgl
from dgl.data import GINDataset
from dgl.dataloading import GraphDataLoader

from model import InfoGraph
from evaluate_embedding import evaluate_embedding

import argparse


def argument():
    parser = argparse.ArgumentParser(description='InfoGraph')
    # data source params
    parser.add_argument('--dataname', type=str, default='MUTAG', help='Name of dataset.')

    # training params
    parser.add_argument('--gpu', type=int, default=-1, help='GPU index, default:-1, using CPU.')
    parser.add_argument('--epochs', type=int, default=20, help='Training epochs.')
    parser.add_argument('--batch_size', type=int, default=128, help='Training batch size.')
    parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.')
    parser.add_argument('--log_interval', type=int, default=1, help='Interval between two evaluations.')

    # model params
    parser.add_argument('--n_layers', type=int, default=3, help='Number of graph convolution layers before each pooling.')
    parser.add_argument('--hid_dim', type=int, default=32, help='Hidden layer dimensionalities.')

    args = parser.parse_args()

    # check cuda
    if args.gpu != -1 and th.cuda.is_available():
        args.device = 'cuda:{}'.format(args.gpu)
    else:
        args.device = 'cpu'

    return args

    
def collate(samples):
    ''' collate function for building graph dataloader'''
    
    graphs, labels = map(list, zip(*samples))

    # generate batched graphs and labels
    batched_graph = dgl.batch(graphs)
    batched_labels = th.tensor(labels)

    n_graphs = len(graphs)
    graph_id = th.arange(n_graphs)
    graph_id = dgl.broadcast_nodes(batched_graph, graph_id)

    batched_graph.ndata['graph_id'] = graph_id

    return batched_graph, batched_labels


if __name__ == '__main__':

    # Step 1: Prepare graph data   ===================================== #
    args = argument()
    print(args)

    # load dataset from dgl.data.GINDataset
    dataset = GINDataset(args.dataname, self_loop = False)

    # get graphs and labels
    graphs, labels = map(list, zip(*dataset))

    # generate a full-graph with all examples for evaluation
    wholegraph = dgl.batch(graphs)
    wholegraph.ndata['attr'] = wholegraph.ndata['attr'].to(th.float32)

    # create dataloader for batch training
    dataloader = GraphDataLoader(dataset,
                                 batch_size=args.batch_size,
                                 collate_fn=collate,
                                 drop_last=False,
                                 shuffle=True)

    in_dim = wholegraph.ndata['attr'].shape[1]

    # Step 2: Create model =================================================================== #
    model = InfoGraph(in_dim, args.hid_dim, args.n_layers)
    model = model.to(args.device)

    # Step 3: Create training components ===================================================== #
    optimizer = th.optim.Adam(model.parameters(), lr=args.lr)
 
    print('===== Before training ======')
    
    wholegraph = wholegraph.to(args.device)
    wholefeat = wholegraph.ndata['attr']
    
    emb = model.get_embedding(wholegraph, wholefeat).cpu()
    res = evaluate_embedding(emb, labels, args.device)

    ''' Evaluate the initialized embeddings '''
    ''' using logistic regression and SVM(non-linear) '''
    print('logreg {:4f}, svc {:4f}'.format(res[0], res[1]))
    
    best_logreg = 0
    best_logreg_epoch = 0
    best_svc = 0
    best_svc_epoch = 0

    # Step 4: training epochs =============================================================== #
    for epoch in range(args.epochs):
        loss_all = 0
        model.train()
    
        for graph, label in dataloader:
            
            graph = graph.to(args.device)
            feat = graph.ndata['attr']
            graph_id = graph.ndata['graph_id']
            
            n_graph = label.shape[0]
    
            optimizer.zero_grad()
            loss = model(graph, feat, graph_id)
            loss.backward()
            optimizer.step()
            loss_all += loss.item()
    
        print('Epoch {}, Loss {:.4f}'.format(epoch, loss_all))
    
        if epoch % args.log_interval == 0:

            # evaluate embeddings
            model.eval()
            emb = model.get_embedding(wholegraph, wholefeat).cpu()
            res = evaluate_embedding(emb, labels, args.device)
            
            if res[0] > best_logreg:
                best_logreg = res[0]
                best_logreg_epoch = epoch

            if res[1] > best_svc:
                best_svc = res[1]
                best_svc_epoch = epoch

            print('best logreg {:4f}, epoch {} | best svc: {:4f}, epoch {}'.format(best_logreg, best_logreg_epoch, best_svc, best_svc_epoch))

    print('Training End')
    print('best logreg {:4f} ,best svc {:4f}'.format(best_logreg, best_svc))