semisupervised.py 7.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import torch as th
import torch.nn.functional as F
import dgl
from dgl.dataloading import GraphDataLoader
from dgl.data.utils import Subset
from qm9_v2 import QM9DatasetV2
from model import InfoGraphS
import argparse


def argument():
    parser = argparse.ArgumentParser(description='InfoGraphS')

    # data source params
    parser.add_argument('--target', type=str, default='mu', help='Choose regression task')
    parser.add_argument('--train_num', type=int, default=5000, help='Size of training set')

    # training params
    parser.add_argument('--gpu', type=int, default=-1, help='GPU index, default:-1, using CPU.')
    parser.add_argument('--epochs', type=int, default=200, help='Training epochs.')
    parser.add_argument('--batch_size', type=int, default=20, help='Training batch size.')
    parser.add_argument('--val_batch_size', type=int, default=100, help='Validation batch size.')

    parser.add_argument('--lr', type=float, default=0.001, help='Learning rate.')
    parser.add_argument('--wd', type=float, default=0, help='Weight decay.')

    # model params
    parser.add_argument('--hid_dim', type=int, default=64, help='Hidden layer dimensionality')
    parser.add_argument('--reg', type=float, default=0.001, help='Regularization coefficient')

    args = parser.parse_args()

    # check cuda
    if args.gpu != -1 and th.cuda.is_available():
        args.device = 'cuda:{}'.format(args.gpu)
    else:
        args.device = 'cpu'

    return args


def collate(samples):
    ''' collate function for building graph dataloader '''

    # generate batched graphs and labels
    graphs, targets = map(list, zip(*samples))
    batched_graph = dgl.batch(graphs)
    batched_targets = th.Tensor(targets)
    
    n_graphs = len(graphs)
    graph_id = th.arange(n_graphs)
    graph_id = dgl.broadcast_nodes(batched_graph, graph_id)
    
    batched_graph.ndata['graph_id'] = graph_id
    
    return batched_graph, batched_targets

def evaluate(model, loader, num, device):
    error = 0
    for graphs, targets in loader:
        graphs = graphs.to(device) 
            
        nfeat, efeat = graphs.ndata['attr'], graphs.edata['edge_attr']
        targets = targets.to(device)
        error += (model(graphs, nfeat, efeat) - targets).abs().sum().item()

    error = error / num
    
    return error

if __name__ == '__main__':

    # Step 1: Prepare graph data   ===================================== #
    args = argument()
    label_keys = [args.target]
    print(args)

    dataset = QM9DatasetV2(label_keys)
    dataset.to_dense()

    graphs = dataset.graphs

    # Train/Val/Test Splitting
    N = len(graphs)
    all_idx = np.arange(N)
    np.random.shuffle(all_idx)

    val_num = 10000
    test_num = 10000

    val_idx = all_idx[:val_num]
    test_idx = all_idx[val_num : val_num + test_num]
    train_idx = all_idx[val_num + test_num : val_num + test_num + args.train_num]

    train_data = Subset(dataset, train_idx)
    val_data = Subset(dataset, val_idx)
    test_data = Subset(dataset, test_idx)

    unsup_idx = all_idx[val_num + test_num:]
    unsup_data = Subset(dataset, unsup_idx)

    # generate supervised training dataloader and unsupervised training dataloader
    train_loader = GraphDataLoader(train_data,
                                   batch_size=args.batch_size,
                                   collate_fn=collate,
                                   drop_last=False,
                                   shuffle=True)

    unsup_loader = GraphDataLoader(unsup_data,
                                   batch_size=args.batch_size,
                                   collate_fn=collate,
                                   drop_last=False,
                                   shuffle=True)

    # generate validation & testing dataloader

    val_loader = GraphDataLoader(val_data,
                                 batch_size=args.val_batch_size,
                                 collate_fn=collate,
                                 drop_last=False,
                                 shuffle=True)

    test_loader = GraphDataLoader(test_data,
                                  batch_size=args.val_batch_size,
                                  collate_fn=collate,
                                  drop_last=False,
                                  shuffle=True)

    print('======== target = {} ========'.format(args.target))

    mean = dataset.labels.mean().item()
    std = dataset.labels.std().item()


    print('mean = {:4f}'.format(mean))
    print('std = {:4f}'.format(std))

    in_dim = dataset[0][0].ndata['attr'].shape[1]

    # Step 2: Create model =================================================================== #
    model = InfoGraphS(in_dim, args.hid_dim)
    model = model.to(args.device)

    # Step 3: Create training components ===================================================== #
    optimizer = th.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
    scheduler = th.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode='min', factor=0.7, patience=5, min_lr=0.000001
    )

    # Step 4: training epochs =============================================================== #
    best_val_error = float('inf')
    test_error = float('inf')
    
    for epoch in range(args.epochs):
        ''' Training '''
        model.train()
        lr = scheduler.optimizer.param_groups[0]['lr']

        iteration = 0
        sup_loss_all = 0
        unsup_loss_all = 0
        consis_loss_all = 0

        for sup_data, unsup_data in zip(train_loader, unsup_loader):
            sup_graph, sup_target = sup_data
            unsup_graph, _ = unsup_data

            sup_graph = sup_graph.to(args.device)
            unsup_graph = unsup_graph.to(args.device)
            
            sup_nfeat, sup_efeat = sup_graph.ndata['attr'], sup_graph.ndata['edge_attr']
            unsup_nfeat, unsup_efeat, unsup_graph_id = unsup_graph.ndata['attr'],\
                                                       unsup_graph.edata['edge_attr'], unsup_graph.edata['graph_id']

            sup_target = sup_target
            sup_target = sup_target.to(args.device)

            optimizer.zero_grad()

            sup_loss = F.mse_loss(model(sup_graph, sup_nfeat, sup_efeat), sup_target)
            unsup_loss, consis_loss = model.unsup_forward(unsup_graph, unsup_nfeat, unsup_efeat, unsup_graph_id)

            loss = sup_loss + unsup_loss + args.reg * consis_loss

            loss.backward()

            sup_loss_all += sup_loss.item()
            unsup_loss_all += unsup_loss.item()
            consis_loss_all += consis_loss.item()

            optimizer.step()

        print('Epoch: {}, Sup_Loss: {:4f}, Unsup_loss: {:.4f}, Consis_loss: {:.4f}' \
                .format(epoch, sup_loss_all, unsup_loss_all, consis_loss_all))

        model.eval()

        val_error = evaluate(model, val_loader, val_num, args.device)
        scheduler.step(val_error)
        
        if val_error < best_val_error:
            best_val_error = val_error
            test_error = evaluate(model, test_loader, test_num, args.device)

        print('Epoch: {}, LR: {}, val_error: {:.4f}, best_test_error: {:.4f}' \
            .format(epoch, lr, val_error, test_error))