test_parmetis.py 9.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import argparse
import json
import os
import sys
import tempfile
import unittest

import dgl
import numpy as np
import torch
from chunk_graph import chunk_graph
from dgl.data.utils import load_graphs, load_tensors

from create_chunked_dataset import create_chunked_dataset
15
from partition_algo.base import load_partition_meta
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

"""
TODO: skipping this test case since the dependency, mpirun, is
not yet configured in the CI framework.
"""


@unittest.skipIf(True, reason="mpi is not available in CI test framework.")
def test_parmetis_preprocessing():
    with tempfile.TemporaryDirectory() as root_dir:
        num_chunks = 2
        g = create_chunked_dataset(root_dir, num_chunks, include_masks=True)

        # Trigger ParMETIS pre-processing here.
        schema_path = os.path.join(root_dir, 'chunked-data/metadata.json')
        results_dir = os.path.join(root_dir, 'parmetis-data')
        os.system(
            f'mpirun -np 2 python3 tools/distpartitioning/parmetis_preprocess.py '
            f'--schema {schema_path} --output {results_dir}'
        )

        # Now add all the tests and check whether the test has passed or failed.
        # Read parmetis_nfiles and ensure all files are present.
        parmetis_data_dir = os.path.join(root_dir, 'parmetis-data')
        assert os.path.isdir(parmetis_data_dir)
        parmetis_nodes_file = os.path.join(
            parmetis_data_dir, 'parmetis_nfiles.txt'
        )
        assert os.path.isfile(parmetis_nodes_file)

        # `parmetis_nfiles.txt` should have each line in the following format.
        # <filename> <global_id_start> <global_id_end>
        with open(parmetis_nodes_file, 'r') as nodes_metafile:
            lines = nodes_metafile.readlines()
            total_node_count = 0
            for line in lines:
                tokens = line.split(" ")
                assert len(tokens) == 3
                assert os.path.isfile(tokens[0])
                assert int(tokens[1]) == total_node_count

                # check contents of each of the nodes files here
                with open(tokens[0], 'r') as nodes_file:
                    node_lines = nodes_file.readlines()
                    for line in node_lines:
                        val = line.split(" ")
                        # <ntype_id> <weight_list> <mask_list> <type_node_id>
                        assert len(val) == 8
                    node_count = len(node_lines)
                    total_node_count += node_count
                assert int(tokens[2]) == total_node_count

        # Meta_data object.
        output_dir = os.path.join(root_dir, 'chunked-data')
        json_file = os.path.join(output_dir, 'metadata.json')
        assert os.path.isfile(json_file)
        with open(json_file, 'rb') as f:
            meta_data = json.load(f)

        # Count the total no. of nodes.
        true_node_count = 0
        num_nodes_per_chunk = meta_data['num_nodes_per_chunk']
        for i in range(len(num_nodes_per_chunk)):
            node_per_part = num_nodes_per_chunk[i]
            for j in range(len(node_per_part)):
                true_node_count += node_per_part[j]
        assert total_node_count == true_node_count

        # Read parmetis_efiles and ensure all files are present.
        # This file contains a list of filenames.
        parmetis_edges_file = os.path.join(
            parmetis_data_dir, 'parmetis_efiles.txt'
        )
        assert os.path.isfile(parmetis_edges_file)

        with open(parmetis_edges_file, 'r') as edges_metafile:
            lines = edges_metafile.readlines()
            total_edge_count = 0
            for line in lines:
                edges_filename = line.strip()
                assert os.path.isfile(edges_filename)

                with open(edges_filename, 'r') as edges_file:
                    edge_lines = edges_file.readlines()
                    total_edge_count += len(edge_lines)
                    for line in edge_lines:
                        val = line.split(" ")
                        assert len(val) == 2

        # Count the total no. of edges
        true_edge_count = 0
        num_edges_per_chunk = meta_data['num_edges_per_chunk']
        for i in range(len(num_edges_per_chunk)):
            edges_per_part = num_edges_per_chunk[i]
            for j in range(len(edges_per_part)):
                true_edge_count += edges_per_part[j]
        assert true_edge_count == total_edge_count


def test_parmetis_postprocessing():
    with tempfile.TemporaryDirectory() as root_dir:
        num_chunks = 2
        g = create_chunked_dataset(root_dir, num_chunks, include_masks=True)

        num_nodes = g.number_of_nodes()
        num_institutions = g.number_of_nodes('institution')
        num_authors = g.number_of_nodes('author')
        num_papers = g.number_of_nodes('paper')

        # Generate random parmetis partition ids for the nodes in the graph.
        # Replace this code with actual ParMETIS executable when it is ready
        output_dir = os.path.join(root_dir, 'chunked-data')
        parmetis_file = os.path.join(output_dir, 'parmetis_output.txt')
        node_ids = np.arange(num_nodes)
        partition_ids = np.random.randint(0, 2, (num_nodes,))
        parmetis_output = np.column_stack([node_ids, partition_ids])

        # Create parmetis output, this is mimicking running actual parmetis.
        with open(parmetis_file, 'w') as f:
            np.savetxt(f, parmetis_output)

        # Check the post processing script here.
        results_dir = os.path.join(output_dir, 'partitions_dir')
        json_file = os.path.join(output_dir, 'metadata.json')
        print(json_file)
        print(results_dir)
        print(parmetis_file)
        os.system(
            f'python3 tools/distpartitioning/parmetis_postprocess.py '
            f'--schema_file {json_file} '
            f'--parmetis_output_file {parmetis_file} '
            f'--partitions_dir {results_dir}'
        )

        ntype_count = {
            'author': num_authors,
            'paper': num_papers,
            'institution': num_institutions,
        }
        for ntype_name in ['author', 'paper', 'institution']:
            fname = os.path.join(results_dir, f'{ntype_name}.txt')
            print(fname)
            assert os.path.isfile(fname)

            # Load and check the partition ids in this file.
            part_ids = np.loadtxt(fname)
            assert part_ids.shape[0] == ntype_count[ntype_name]
            assert np.min(part_ids) == 0
            assert np.max(part_ids) == 1

166
167
168
169
170
171
172
        # check partition meta file
        part_meta_file = os.path.join(results_dir, "partition_meta.json")
        assert os.path.isfile(part_meta_file)
        part_meta = load_partition_meta(part_meta_file)
        assert part_meta.num_parts == 2
        assert part_meta.algo_name == "metis"

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

"""
TODO: skipping this test case since it depends on the dependency, mpi,
which is not yet configured in the CI framework.
"""


@unittest.skipIf(True, reason="mpi is not available in CI test framework.")
def test_parmetis_wrapper():
    with tempfile.TemporaryDirectory() as root_dir:
        num_chunks = 2
        graph_name = "mag240m"
        g = create_chunked_dataset(root_dir, num_chunks, include_masks=True)
        all_ntypes = g.ntypes
        all_etypes = g.etypes
        num_constraints = len(all_ntypes) + 3
        num_institutions = g.number_of_nodes('institution')
        num_authors = g.number_of_nodes('author')
        num_papers = g.number_of_nodes('paper')

        # Trigger ParMETIS.
        schema_file = os.path.join(root_dir, 'chunked-data/metadata.json')
        preproc_output_dir = os.path.join(
            root_dir, 'chunked-data/preproc_output_dir'
        )
        parmetis_output_file = os.path.join(
            os.getcwd(), f'{graph_name}_part.{num_chunks}'
        )
        partitions_dir = os.path.join(root_dir, 'chunked-data/partitions_dir')
        hostfile = os.path.join(root_dir, 'ip_config.txt')
        with open(hostfile, 'w') as f:
            f.write('127.0.0.1\n')
            f.write('127.0.0.1\n')

        num_nodes = g.number_of_nodes()
        num_edges = g.number_of_edges()
        stats_file = f'{graph_name}_stats.txt'
        with open(stats_file, 'w') as f:
            f.write(f'{num_nodes} {num_edges} {num_constraints}')

        parmetis_cmd = (
            f'python3 tools/distpartitioning/parmetis_wrapper.py '
            f'--schema_file {schema_file} '
            f'--preproc_output_dir {preproc_output_dir} '
            f'--hostfile {hostfile} '
            f'--parmetis_output_file {parmetis_output_file} '
            f'--partitions_dir {partitions_dir} '
        )
        print(f'Executing the following cmd: {parmetis_cmd}')
        print(parmetis_cmd)
        os.system(parmetis_cmd)

        ntype_count = {
            'author': num_authors,
            'paper': num_papers,
            'institution': num_institutions,
        }
        for ntype_name in ['author', 'paper', 'institution']:
            fname = os.path.join(partitions_dir, f'{ntype_name}.txt')
            print(fname)
            assert os.path.isfile(fname)

            # Load and check the partition ids in this file.
            part_ids = np.loadtxt(fname)
            assert part_ids.shape[0] == ntype_count[ntype_name]
            assert np.min(part_ids) == 0
            assert np.max(part_ids) == (num_chunks - 1)