train.py 3.9 KB
Newer Older
paoxiaode's avatar
paoxiaode committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Gated Graph Convolutional Network module for graph classification tasks
"""

import torch
import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim
from dgl.dataloading import GraphDataLoader
from dgl.nn.pytorch import GatedGCNConv
from dgl.nn.pytorch.glob import AvgPooling
from ogb.graphproppred import DglGraphPropPredDataset, Evaluator
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder


class GatedGCN(nn.Module):
    def __init__(
        self,
        hid_dim,
        out_dim,
        num_layers,
        dropout=0.2,
        batch_norm=True,
        residual=True,
        activation=F.relu,
    ):
        super(GatedGCN, self).__init__()

        self.num_layers = num_layers
        self.dropout = dropout

        self.node_encoder = AtomEncoder(hid_dim)
        self.edge_encoder = BondEncoder(hid_dim)

        self.layers = nn.ModuleList()
        for _ in range(self.num_layers):
            layer = GatedGCNConv(
                input_feats=hid_dim,
                edge_feats=hid_dim,
                output_feats=hid_dim,
                dropout=dropout,
                batch_norm=batch_norm,
                residual=residual,
                activation=activation,
            )
            self.layers.append(layer)

        self.pooling = AvgPooling()
        self.output = nn.Linear(hid_dim, out_dim)

    def forward(self, g, node_feat, edge_feat):
        # Encode node and edge feature.
        hv = self.node_encoder(node_feat)
        he = self.edge_encoder(edge_feat)

        # GatedGCNConv layers.
        for layer in self.layers:
            hv, he = layer(g, hv, he)

        # Output project.
        h_g = self.pooling(g, hv)

        return self.output(h_g)


def train(model, device, data_loader, opt, loss_fn):
    model.train()
    train_loss = []

    for g, labels in data_loader:
        g = g.to(device)
        labels = labels.to(torch.float32).to(device)
        logits = model(g, g.ndata["feat"], g.edata["feat"])
        loss = loss_fn(logits, labels)
        opt.zero_grad()
        loss.backward()
        opt.step()
        train_loss.append(loss.item())

    return sum(train_loss) / len(train_loss)


@torch.no_grad()
def evaluate(model, device, data_loader, evaluator):
    model.eval()
    y_true, y_pred = [], []

    for g, labels in data_loader:
        g = g.to(device)
        logits = model(g, g.ndata["feat"], g.edata["feat"])
        y_true.append(labels.detach().cpu())
        y_pred.append(logits.detach().cpu())

    y_true = torch.cat(y_true, dim=0).numpy()
    y_pred = torch.cat(y_pred, dim=0).numpy()

    return evaluator.eval({"y_true": y_true, "y_pred": y_pred})["rocauc"]


def main():
    device = "cuda:0" if torch.cuda.is_available() else "cpu"

    # Load ogb dataset & evaluator.
    dataset = DglGraphPropPredDataset(name="ogbg-molhiv")
    evaluator = Evaluator(name="ogbg-molhiv")

    n_classes = dataset.num_tasks

    split_idx = dataset.get_idx_split()
    train_loader = GraphDataLoader(
        dataset[split_idx["train"]],
        batch_size=32,
        shuffle=True,
    )
    valid_loader = GraphDataLoader(dataset[split_idx["valid"]], batch_size=32)
    test_loader = GraphDataLoader(dataset[split_idx["test"]], batch_size=32)

    # Load model.
    model = GatedGCN(hid_dim=256, out_dim=n_classes, num_layers=8).to(device)

    print(model)

    opt = optim.Adam(model.parameters(), lr=0.01)
    loss_fn = nn.BCEWithLogitsLoss()

    print("---------- Training ----------")
    for epoch in range(50):
        # Kick off training.
        loss = train(model, device, train_loader, opt, loss_fn)

        # Evaluate the prediction.
        valid_acc = evaluate(model, device, valid_loader, evaluator)
        test_acc = evaluate(model, device, test_loader, evaluator)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {valid_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    main()