model_hetero.py 3.93 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""This model shows an example of using dgl.metapath_reachable_graph on the original heterogeneous
graph.

Because the original HAN implementation only gives the preprocessed homogeneous graph, this model
could not reproduce the result in HAN as they did not provide the preprocessing code, and we
constructed another dataset from ACM with a different set of papers, connections, features and
labels.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

import dgl
from dgl.nn.pytorch import GATConv

17

Mufei Li's avatar
Mufei Li committed
18
19
20
21
22
23
24
class SemanticAttention(nn.Module):
    def __init__(self, in_size, hidden_size=128):
        super(SemanticAttention, self).__init__()

        self.project = nn.Sequential(
            nn.Linear(in_size, hidden_size),
            nn.Tanh(),
25
            nn.Linear(hidden_size, 1, bias=False),
Mufei Li's avatar
Mufei Li committed
26
27
28
        )

    def forward(self, z):
29
30
31
32
33
        w = self.project(z).mean(0)  # (M, 1)
        beta = torch.softmax(w, dim=0)  # (M, 1)
        beta = beta.expand((z.shape[0],) + beta.shape)  # (N, M, 1)

        return (beta * z).sum(1)  # (N, D * K)
Mufei Li's avatar
Mufei Li committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


class HANLayer(nn.Module):
    """
    HAN layer.

    Arguments
    ---------
    meta_paths : list of metapaths, each as a list of edge types
    in_size : input feature dimension
    out_size : output feature dimension
    layer_num_heads : number of attention heads
    dropout : Dropout probability

    Inputs
    ------
peizhou001's avatar
peizhou001 committed
50
    g : DGLGraph
Mufei Li's avatar
Mufei Li committed
51
52
53
54
55
56
57
58
59
        The heterogeneous graph
    h : tensor
        Input features

    Outputs
    -------
    tensor
        The output feature
    """
60

Mufei Li's avatar
Mufei Li committed
61
62
63
64
65
66
    def __init__(self, meta_paths, in_size, out_size, layer_num_heads, dropout):
        super(HANLayer, self).__init__()

        # One GAT layer for each meta path based adjacency matrix
        self.gat_layers = nn.ModuleList()
        for i in range(len(meta_paths)):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
            self.gat_layers.append(
                GATConv(
                    in_size,
                    out_size,
                    layer_num_heads,
                    dropout,
                    dropout,
                    activation=F.elu,
                    allow_zero_in_degree=True,
                )
            )
        self.semantic_attention = SemanticAttention(
            in_size=out_size * layer_num_heads
        )
Mufei Li's avatar
Mufei Li committed
81
82
83
84
85
86
87
88
89
90
91
92
        self.meta_paths = list(tuple(meta_path) for meta_path in meta_paths)

        self._cached_graph = None
        self._cached_coalesced_graph = {}

    def forward(self, g, h):
        semantic_embeddings = []

        if self._cached_graph is None or self._cached_graph is not g:
            self._cached_graph = g
            self._cached_coalesced_graph.clear()
            for meta_path in self.meta_paths:
93
94
95
                self._cached_coalesced_graph[
                    meta_path
                ] = dgl.metapath_reachable_graph(g, meta_path)
Mufei Li's avatar
Mufei Li committed
96
97
98
99

        for i, meta_path in enumerate(self.meta_paths):
            new_g = self._cached_coalesced_graph[meta_path]
            semantic_embeddings.append(self.gat_layers[i](new_g, h).flatten(1))
100
101
102
103
104
        semantic_embeddings = torch.stack(
            semantic_embeddings, dim=1
        )  # (N, M, D * K)

        return self.semantic_attention(semantic_embeddings)  # (N, D * K)
Mufei Li's avatar
Mufei Li committed
105
106
107


class HAN(nn.Module):
108
109
110
    def __init__(
        self, meta_paths, in_size, hidden_size, out_size, num_heads, dropout
    ):
Mufei Li's avatar
Mufei Li committed
111
112
113
        super(HAN, self).__init__()

        self.layers = nn.ModuleList()
114
115
116
        self.layers.append(
            HANLayer(meta_paths, in_size, hidden_size, num_heads[0], dropout)
        )
Mufei Li's avatar
Mufei Li committed
117
        for l in range(1, len(num_heads)):
118
119
120
121
122
123
124
125
126
            self.layers.append(
                HANLayer(
                    meta_paths,
                    hidden_size * num_heads[l - 1],
                    hidden_size,
                    num_heads[l],
                    dropout,
                )
            )
Mufei Li's avatar
Mufei Li committed
127
128
129
130
131
132
133
        self.predict = nn.Linear(hidden_size * num_heads[-1], out_size)

    def forward(self, g, h):
        for gnn in self.layers:
            h = gnn(g, h)

        return self.predict(h)