main_sparse.py 15.1 KB
Newer Older
1
2
3
4
import math
import os
import sys
import time
5
from collections import defaultdict
6
7
8
9
10
11
12
13

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from numpy import random
from torch.nn.parameter import Parameter
14
15
from utils import *

16
17
18
19
20
import dgl
import dgl.function as fn


def get_graph(network_data, vocab):
21
    """Build graph, treat all nodes as the same type
22
23
24
25
26
27
28
29
30

    Parameters
    ----------
    network_data: a dict
        keys describing the edge types, values representing edges
    vocab: a dict
        mapping node IDs to node indices
    Output
    ------
peizhou001's avatar
peizhou001 committed
31
    DGLGraph
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        a heterogenous graph, with one node type and different edge types
    """
    graphs = []

    node_type = "_N"  # '_N' can be replaced by an arbitrary name
    data_dict = dict()
    num_nodes_dict = {node_type: len(vocab)}

    for edge_type in network_data:
        tmp_data = network_data[edge_type]
        src = []
        dst = []
        for edge in tmp_data:
            src.extend([vocab[edge[0]], vocab[edge[1]]])
            dst.extend([vocab[edge[1]], vocab[edge[0]]])
        data_dict[(node_type, edge_type, node_type)] = (src, dst)
    graph = dgl.heterograph(data_dict, num_nodes_dict)

    return graph


class NeighborSampler(object):
    def __init__(self, g, num_fanouts):
        self.g = g
        self.num_fanouts = num_fanouts

    def sample(self, pairs):
        pairs = np.stack(pairs)
        heads, tails, types = pairs[:, 0], pairs[:, 1], pairs[:, 2]
61
62
63
        seeds, head_invmap = torch.unique(
            torch.LongTensor(heads), return_inverse=True
        )
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        blocks = []
        for fanout in reversed(self.num_fanouts):
            sampled_graph = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
            sampled_block = dgl.to_block(sampled_graph, seeds)
            seeds = sampled_block.srcdata[dgl.NID]
            blocks.insert(0, sampled_block)
        return (
            blocks,
            torch.LongTensor(head_invmap),
            torch.LongTensor(tails),
            torch.LongTensor(types),
        )


class DGLGATNE(nn.Module):
    def __init__(
        self,
        num_nodes,
        embedding_size,
        embedding_u_size,
        edge_types,
        edge_type_count,
        dim_a,
    ):
        super(DGLGATNE, self).__init__()
        self.num_nodes = num_nodes
        self.embedding_size = embedding_size
        self.embedding_u_size = embedding_u_size
        self.edge_types = edge_types
        self.edge_type_count = edge_type_count
        self.dim_a = dim_a

96
97
98
        self.node_embeddings = nn.Embedding(
            num_nodes, embedding_size, sparse=True
        )
99
100
101
102
103
104
105
106
107
        self.node_type_embeddings = nn.Embedding(
            num_nodes * edge_type_count, embedding_u_size, sparse=True
        )
        self.trans_weights = Parameter(
            torch.FloatTensor(edge_type_count, embedding_u_size, embedding_size)
        )
        self.trans_weights_s1 = Parameter(
            torch.FloatTensor(edge_type_count, embedding_u_size, dim_a)
        )
108
109
110
        self.trans_weights_s2 = Parameter(
            torch.FloatTensor(edge_type_count, dim_a, 1)
        )
111
112
113
114
115
116

        self.reset_parameters()

    def reset_parameters(self):
        self.node_embeddings.weight.data.uniform_(-1.0, 1.0)
        self.node_type_embeddings.weight.data.uniform_(-1.0, 1.0)
117
118
119
120
121
122
123
124
125
        self.trans_weights.data.normal_(
            std=1.0 / math.sqrt(self.embedding_size)
        )
        self.trans_weights_s1.data.normal_(
            std=1.0 / math.sqrt(self.embedding_size)
        )
        self.trans_weights_s2.data.normal_(
            std=1.0 / math.sqrt(self.embedding_size)
        )
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    # embs: [batch_size, embedding_size]
    def forward(self, block):
        input_nodes = block.srcdata[dgl.NID]
        output_nodes = block.dstdata[dgl.NID]
        batch_size = block.number_of_dst_nodes()
        node_type_embed = []

        with block.local_scope():
            for i in range(self.edge_type_count):
                edge_type = self.edge_types[i]
                block.srcdata[edge_type] = self.node_type_embeddings(
                    input_nodes * self.edge_type_count + i
                )
                block.dstdata[edge_type] = self.node_type_embeddings(
                    output_nodes * self.edge_type_count + i
                )
                block.update_all(
144
145
146
                    fn.copy_u(edge_type, "m"),
                    fn.sum("m", edge_type),
                    etype=edge_type,
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
                )
                node_type_embed.append(block.dstdata[edge_type])

            node_type_embed = torch.stack(node_type_embed, 1)
            tmp_node_type_embed = node_type_embed.unsqueeze(2).view(
                -1, 1, self.embedding_u_size
            )
            trans_w = (
                self.trans_weights.unsqueeze(0)
                .repeat(batch_size, 1, 1, 1)
                .view(-1, self.embedding_u_size, self.embedding_size)
            )
            trans_w_s1 = (
                self.trans_weights_s1.unsqueeze(0)
                .repeat(batch_size, 1, 1, 1)
                .view(-1, self.embedding_u_size, self.dim_a)
            )
            trans_w_s2 = (
                self.trans_weights_s2.unsqueeze(0)
                .repeat(batch_size, 1, 1, 1)
                .view(-1, self.dim_a, 1)
            )

            attention = (
                F.softmax(
                    torch.matmul(
173
174
175
                        torch.tanh(
                            torch.matmul(tmp_node_type_embed, trans_w_s1)
                        ),
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
                        trans_w_s2,
                    )
                    .squeeze(2)
                    .view(-1, self.edge_type_count),
                    dim=1,
                )
                .unsqueeze(1)
                .repeat(1, self.edge_type_count, 1)
            )

            node_type_embed = torch.matmul(attention, node_type_embed).view(
                -1, 1, self.embedding_u_size
            )
            node_embed = self.node_embeddings(output_nodes).unsqueeze(1).repeat(
                1, self.edge_type_count, 1
            ) + torch.matmul(node_type_embed, trans_w).view(
                -1, self.edge_type_count, self.embedding_size
            )
            last_node_embed = F.normalize(node_embed, dim=2)

196
197
198
            return (
                last_node_embed  # [batch_size, edge_type_count, embedding_size]
            )
199
200
201
202
203
204
205
206
207
208
209
210
211


class NSLoss(nn.Module):
    def __init__(self, num_nodes, num_sampled, embedding_size):
        super(NSLoss, self).__init__()
        self.num_nodes = num_nodes
        self.num_sampled = num_sampled
        self.embedding_size = embedding_size

        # [ (log(i+2) - log(i+1)) / log(num_nodes + 1)]
        self.sample_weights = F.normalize(
            torch.Tensor(
                [
212
213
                    (math.log(k + 2) - math.log(k + 1))
                    / math.log(num_nodes + 1)
214
215
216
217
218
219
220
221
222
                    for k in range(num_nodes)
                ]
            ),
            dim=0,
        )
        self.weights = nn.Embedding(num_nodes, embedding_size, sparse=True)
        self.reset_parameters()

    def reset_parameters(self):
223
224
225
        self.weights.weight.data.normal_(
            std=1.0 / math.sqrt(self.embedding_size)
        )
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    def forward(self, input, embs, label):
        n = input.shape[0]
        log_target = torch.log(
            torch.sigmoid(torch.sum(torch.mul(embs, self.weights(label)), 1))
        )
        negs = (
            torch.multinomial(
                self.sample_weights, self.num_sampled * n, replacement=True
            )
            .view(n, self.num_sampled)
            .to(input.device)
        )
        noise = torch.neg(self.weights(negs))
        sum_log_sampled = torch.sum(
            torch.log(torch.sigmoid(torch.bmm(noise, embs.unsqueeze(2)))), 1
        ).squeeze()

        loss = log_target + sum_log_sampled
        return -loss.sum() / n


def train_model(network_data):
    index2word, vocab, type_nodes = generate_vocab(network_data)

    edge_types = list(network_data.keys())
    num_nodes = len(index2word)
    edge_type_count = len(edge_types)
    epochs = args.epoch
    batch_size = args.batch_size
    embedding_size = args.dimensions
    embedding_u_size = args.edge_dim
    u_num = edge_type_count
    num_sampled = args.negative_samples
    dim_a = args.att_dim
    att_head = 1
    neighbor_samples = args.neighbor_samples
    num_workers = args.workers

    device = torch.device(
        "cuda" if args.gpu is not None and torch.cuda.is_available() else "cpu"
    )

    g = get_graph(network_data, vocab)
    all_walks = []
    for i in range(edge_type_count):
        nodes = torch.LongTensor(type_nodes[i] * args.num_walks)
        traces, types = dgl.sampling.random_walk(
            g, nodes, metapath=[edge_types[i]] * (neighbor_samples - 1)
        )
        all_walks.append(traces)

    train_pairs = generate_pairs(all_walks, args.window_size, num_workers)
    neighbor_sampler = NeighborSampler(g, [neighbor_samples])
    train_dataloader = torch.utils.data.DataLoader(
        train_pairs,
        batch_size=batch_size,
        collate_fn=neighbor_sampler.sample,
        shuffle=True,
        num_workers=num_workers,
        pin_memory=True,
    )

    model = DGLGATNE(
290
291
292
293
294
295
        num_nodes,
        embedding_size,
        embedding_u_size,
        edge_types,
        edge_type_count,
        dim_a,
296
297
298
299
300
301
302
    )

    nsloss = NSLoss(num_nodes, num_sampled, embedding_size)

    model.to(device)
    nsloss.to(device)

303
304
305
    embeddings_params = list(
        map(id, model.node_embeddings.parameters())
    ) + list(map(id, model.node_type_embeddings.parameters()))
306
307
308
309
310
311
    weights_params = list(map(id, nsloss.weights.parameters()))

    optimizer = torch.optim.Adam(
        [
            {
                "params": filter(
312
313
                    lambda p: id(p) not in embeddings_params,
                    model.parameters(),
314
315
316
317
                )
            },
            {
                "params": filter(
318
319
                    lambda p: id(p) not in weights_params,
                    nsloss.parameters(),
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
                )
            },
        ],
        lr=1e-3,
    )

    sparse_optimizer = torch.optim.SparseAdam(
        [
            {"params": model.node_embeddings.parameters()},
            {"params": model.node_type_embeddings.parameters()},
            {"params": nsloss.weights.parameters()},
        ],
        lr=1e-3,
    )

    best_score = 0
    patience = 0
    for epoch in range(epochs):
        model.train()

        random.shuffle(train_pairs)

        data_iter = tqdm.tqdm(
            train_dataloader,
            desc="epoch %d" % (epoch),
            total=(len(train_pairs) + (batch_size - 1)) // batch_size,
        )
        avg_loss = 0.0

        for i, (block, head_invmap, tails, block_types) in enumerate(data_iter):
            optimizer.zero_grad()
            sparse_optimizer.zero_grad()
            # embs: [batch_size, edge_type_count, embedding_size]
            block_types = block_types.to(device)
            embs = model(block[0].to(device))[head_invmap]
            embs = embs.gather(
356
357
358
359
                1,
                block_types.view(-1, 1, 1).expand(
                    embs.shape[0], 1, embs.shape[2]
                ),
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
            )[:, 0]
            loss = nsloss(
                block[0].dstdata[dgl.NID][head_invmap].to(device),
                embs,
                tails.to(device),
            )
            loss.backward()
            optimizer.step()
            sparse_optimizer.step()
            avg_loss += loss.item()

            post_fix = {
                "epoch": epoch,
                "iter": i,
                "avg_loss": avg_loss / (i + 1),
                "loss": loss.item(),
            }
            data_iter.set_postfix(post_fix)

        model.eval()
        # {'1': {}, '2': {}}
381
382
383
        final_model = dict(
            zip(edge_types, [dict() for _ in range(edge_type_count)])
        )
384
385
386
387
388
389
390
        for i in range(num_nodes):
            train_inputs = (
                torch.tensor([i for _ in range(edge_type_count)])
                .unsqueeze(1)
                .to(device)
            )  # [i, i]
            train_types = (
391
392
393
                torch.tensor(list(range(edge_type_count)))
                .unsqueeze(1)
                .to(device)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            )  # [0, 1]
            pairs = torch.cat(
                (train_inputs, train_inputs, train_types), dim=1
            )  # (2, 3)
            (
                train_blocks,
                train_invmap,
                fake_tails,
                train_types,
            ) = neighbor_sampler.sample(pairs.cpu())

            node_emb = model(train_blocks[0].to(device))[train_invmap]
            node_emb = node_emb.gather(
                1,
                train_types.to(device)
                .view(-1, 1, 1)
                .expand(node_emb.shape[0], 1, node_emb.shape[2]),
            )[:, 0]

            for j in range(edge_type_count):
                final_model[edge_types[j]][index2word[i]] = (
                    node_emb[j].cpu().detach().numpy()
                )

        valid_aucs, valid_f1s, valid_prs = [], [], []
        test_aucs, test_f1s, test_prs = [], [], []
        for i in range(edge_type_count):
421
422
423
            if args.eval_type == "all" or edge_types[i] in args.eval_type.split(
                ","
            ):
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
                tmp_auc, tmp_f1, tmp_pr = evaluate(
                    final_model[edge_types[i]],
                    valid_true_data_by_edge[edge_types[i]],
                    valid_false_data_by_edge[edge_types[i]],
                    num_workers,
                )
                valid_aucs.append(tmp_auc)
                valid_f1s.append(tmp_f1)
                valid_prs.append(tmp_pr)

                tmp_auc, tmp_f1, tmp_pr = evaluate(
                    final_model[edge_types[i]],
                    testing_true_data_by_edge[edge_types[i]],
                    testing_false_data_by_edge[edge_types[i]],
                    num_workers,
                )
                test_aucs.append(tmp_auc)
                test_f1s.append(tmp_f1)
                test_prs.append(tmp_pr)
        print("valid auc:", np.mean(valid_aucs))
        print("valid pr:", np.mean(valid_prs))
        print("valid f1:", np.mean(valid_f1s))

        average_auc = np.mean(test_aucs)
        average_f1 = np.mean(test_f1s)
        average_pr = np.mean(test_prs)

        cur_score = np.mean(valid_aucs)
        if cur_score > best_score:
            best_score = cur_score
            patience = 0
        else:
            patience += 1
            if patience > args.patience:
                print("Early Stopping")
                break
    return average_auc, average_f1, average_pr


if __name__ == "__main__":
    args = parse_args()
    file_name = args.input
    print(args)

    training_data_by_type = load_training_data(file_name + "/train.txt")
    valid_true_data_by_edge, valid_false_data_by_edge = load_testing_data(
        file_name + "/valid.txt"
    )
    testing_true_data_by_edge, testing_false_data_by_edge = load_testing_data(
        file_name + "/test.txt"
    )

    start = time.time()
    average_auc, average_f1, average_pr = train_model(training_data_by_type)
    end = time.time()

    print("Overall ROC-AUC:", average_auc)
    print("Overall PR-AUC", average_pr)
    print("Overall F1:", average_f1)
    print("Training Time", end - start)