test_model.py 6.44 KB
Newer Older
1
import dgl
Mufei Li's avatar
Mufei Li committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pytest
import torch
from dglgo.model import *
from test_utils.graph_cases import get_cases

@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_gcn(g):
    data_info = {
        'num_nodes': g.num_nodes(),
        'out_size': 7
    }
    node_feat = None
    edge_feat = g.edata['scalar_w']

    # node embedding + not use_edge_weight
    model = GCN(data_info, embed_size=10, use_edge_weight=False)
    model(g, node_feat)

    # node embedding + use_edge_weight
    model = GCN(data_info, embed_size=10, use_edge_weight=True)
    model(g, node_feat, edge_feat)

    data_info['in_size'] = g.ndata['h'].shape[-1]
    node_feat = g.ndata['h']

    # node feat + not use_edge_weight
    model = GCN(data_info, embed_size=-1, use_edge_weight=False)
    model(g, node_feat)

    # node feat + use_edge_weight
    model = GCN(data_info, embed_size=-1, use_edge_weight=True)
    model(g, node_feat, edge_feat)

@pytest.mark.parametrize('g', get_cases(['block-bipartite']))
def test_gcn_block(g):
    data_info = {
        'in_size': 10,
        'out_size': 7
    }

    blocks = [g]
    node_feat = torch.randn(g.num_src_nodes(), data_info['in_size'])
    edge_feat = torch.abs(torch.randn(g.num_edges()))
    # not use_edge_weight
    model = GCN(data_info, use_edge_weight=False)
    model.forward_block(blocks, node_feat)

    # use_edge_weight
    model = GCN(data_info, use_edge_weight=True)
    model.forward_block(blocks, node_feat, edge_feat)

@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_gat(g):
    data_info = {
        'num_nodes': g.num_nodes(),
        'out_size': 7
    }
    node_feat = None

    # node embedding
    model = GAT(data_info, embed_size=10)
    model(g, node_feat)

    # node feat
    data_info['in_size'] = g.ndata['h'].shape[-1]
    node_feat = g.ndata['h']
    model = GAT(data_info, embed_size=-1)
    model(g, node_feat)

@pytest.mark.parametrize('g', get_cases(['block-bipartite']))
def test_gat_block(g):
    data_info = {
        'in_size': 10,
        'out_size': 7
    }

    blocks = [g]
    node_feat = torch.randn(g.num_src_nodes(), data_info['in_size'])
    model = GAT(data_info, num_layers=1, heads=[8])
    model.forward_block(blocks, node_feat)

@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_gin(g):
    data_info = {
        'num_nodes': g.num_nodes(),
        'out_size': 7
    }
    node_feat = None

    # node embedding
    model = GIN(data_info, embed_size=10)
    model(g, node_feat)

    # node feat
    data_info['in_size'] = g.ndata['h'].shape[-1]
    node_feat = g.ndata['h']
    model = GIN(data_info, embed_size=-1)
    model(g, node_feat)

@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_sage(g):
    data_info = {
        'num_nodes': g.num_nodes(),
        'out_size': 7
    }
    node_feat = None
    edge_feat = g.edata['scalar_w']

    # node embedding
    model = GraphSAGE(data_info, embed_size=10)
    model(g, node_feat)
    model(g, node_feat, edge_feat)

    # node feat
    data_info['in_size'] = g.ndata['h'].shape[-1]
    node_feat = g.ndata['h']
    model = GraphSAGE(data_info, embed_size=-1)
    model(g, node_feat)
    model(g, node_feat, edge_feat)

@pytest.mark.parametrize('g', get_cases(['block-bipartite']))
def test_sage_block(g):
    data_info = {
        'in_size': 10,
        'out_size': 7
    }

    blocks = [g]
    node_feat = torch.randn(g.num_src_nodes(), data_info['in_size'])
    edge_feat = torch.abs(torch.randn(g.num_edges()))
    model = GraphSAGE(data_info, embed_size=-1)
    model.forward_block(blocks, node_feat)
    model.forward_block(blocks, node_feat, edge_feat)

@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_sgc(g):
    data_info = {
        'num_nodes': g.num_nodes(),
        'out_size': 7
    }
    node_feat = None

    # node embedding
    model = SGC(data_info, embed_size=10)
    model(g, node_feat)

    # node feat
    data_info['in_size'] = g.ndata['h'].shape[-1]
    node_feat = g.ndata['h']
    model = SGC(data_info, embed_size=-1)
    model(g, node_feat)

def test_bilinear():
    data_info = {
        'in_size': 10,
        'out_size': 1
    }
    model = BilinearPredictor(data_info)
    num_pairs = 10
    h_src = torch.randn(num_pairs, data_info['in_size'])
    h_dst = torch.randn(num_pairs, data_info['in_size'])
    model(h_src, h_dst)

def test_ele():
    data_info = {
        'in_size': 10,
        'out_size': 1
    }
    model = ElementWiseProductPredictor(data_info)
    num_pairs = 10
    h_src = torch.randn(num_pairs, data_info['in_size'])
    h_dst = torch.randn(num_pairs, data_info['in_size'])
    model(h_src, h_dst)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

@pytest.mark.parametrize('virtual_node', [True, False])
def test_ogbg_gin(virtual_node):
    # Test for ogbg-mol datasets
    data_info = {
        'name': 'ogbg-molhiv',
        'out_size': 1
    }
    model = OGBGGIN(data_info,
                    embed_size=10,
                    num_layers=2,
                    virtual_node=virtual_node)
    num_nodes = 5
    num_edges = 15
    g1 = dgl.rand_graph(num_nodes, num_edges)
    g2 = dgl.rand_graph(num_nodes, num_edges)
    g = dgl.batch([g1, g2])
    num_nodes = g.num_nodes()
    num_edges = g.num_edges()
    nfeat = torch.zeros(num_nodes, 9).long()
    efeat = torch.zeros(num_edges, 3).long()
    model(g, nfeat, efeat)

    # Test for non-ogbg-mol datasets
    data_info = {
        'name': 'a_dataset',
        'out_size': 1,
        'node_feat_size': 15,
        'edge_feat_size': 5
    }
    model = OGBGGIN(data_info,
                    embed_size=10,
                    num_layers=2,
                    virtual_node=virtual_node)
    nfeat = torch.randn(num_nodes, data_info['node_feat_size'])
    efeat = torch.randn(num_edges, data_info['edge_feat_size'])
    model(g, nfeat, efeat)

def test_pna():
    # Test for ogbg-mol datasets
    data_info = {
        'name': 'ogbg-molhiv',
        'delta': 1,
        'out_size': 1
    }
    model = PNA(data_info,
                embed_size=10,
                num_layers=2)
    num_nodes = 5
    num_edges = 15
    g = dgl.rand_graph(num_nodes, num_edges)
    nfeat = torch.zeros(num_nodes, 9).long()
    model(g, nfeat)

    # Test for non-ogbg-mol datasets
    data_info = {
        'name': 'a_dataset',
        'node_feat_size': 15,
        'delta': 1,
        'out_size': 1
    }
    model = PNA(data_info,
                embed_size=10,
                num_layers=2)
    nfeat = torch.randn(num_nodes, data_info['node_feat_size'])
    model(g, nfeat)