test_readout.py 7.41 KB
Newer Older
1
import dgl
2
import numpy as np
3
import backend as F
4
import networkx as nx
VoVAllen's avatar
VoVAllen committed
5
import unittest
6
7
import pytest
from test_utils.graph_cases import get_cases
nv-dlasalle's avatar
nv-dlasalle committed
8
from test_utils import parametrize_idtype
9

nv-dlasalle's avatar
nv-dlasalle committed
10
@parametrize_idtype
11
12
13
14
15
16
17
18
19
20
21
22
23
def test_sum_case1(idtype):
    # NOTE: If you want to update this test case, remember to update the docstring
    #  example too!!!
    g1 = dgl.graph(([0, 1], [1, 0]), idtype=idtype, device=F.ctx())
    g1.ndata['h'] = F.tensor([1., 2.])
    g2 = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g2.ndata['h'] = F.tensor([1., 2., 3.])
    bg = dgl.batch([g1, g2])
    bg.ndata['w'] = F.tensor([.1, .2, .1, .5, .2])
    assert F.allclose(F.tensor([3.]), dgl.sum_nodes(g1, 'h'))
    assert F.allclose(F.tensor([3., 6.]), dgl.sum_nodes(bg, 'h'))
    assert F.allclose(F.tensor([.5, 1.7]), dgl.sum_nodes(bg, 'h', 'w'))

nv-dlasalle's avatar
nv-dlasalle committed
24
@parametrize_idtype
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['dglgraph']))
@pytest.mark.parametrize('reducer', ['sum', 'max', 'mean'])
def test_reduce_readout(g, idtype, reducer):
    g = g.astype(idtype).to(F.ctx())
    g.ndata['h'] = F.randn((g.number_of_nodes(), 3))
    g.edata['h'] = F.randn((g.number_of_edges(), 2))

    # Test.1: node readout
    x = dgl.readout_nodes(g, 'h', op=reducer)
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = dgl.readout_nodes(sg, 'h', op=reducer)
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    x = getattr(dgl, '{}_nodes'.format(reducer))(g, 'h')
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = getattr(dgl, '{}_nodes'.format(reducer))(sg, 'h')
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    # Test.2: edge readout
    x = dgl.readout_edges(g, 'h', op=reducer)
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = dgl.readout_edges(sg, 'h', op=reducer)
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    x = getattr(dgl, '{}_edges'.format(reducer))(g, 'h')
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = getattr(dgl, '{}_edges'.format(reducer))(sg, 'h')
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

nv-dlasalle's avatar
nv-dlasalle committed
70
@parametrize_idtype
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['dglgraph']))
@pytest.mark.parametrize('reducer', ['sum', 'max', 'mean'])
def test_weighted_reduce_readout(g, idtype, reducer):
    g = g.astype(idtype).to(F.ctx())
    g.ndata['h'] = F.randn((g.number_of_nodes(), 3))
    g.ndata['w'] = F.randn((g.number_of_nodes(), 1))
    g.edata['h'] = F.randn((g.number_of_edges(), 2))
    g.edata['w'] = F.randn((g.number_of_edges(), 1))

    # Test.1: node readout
    x = dgl.readout_nodes(g, 'h', 'w', op=reducer)
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = dgl.readout_nodes(sg, 'h', 'w', op=reducer)
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    x = getattr(dgl, '{}_nodes'.format(reducer))(g, 'h', 'w')
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = getattr(dgl, '{}_nodes'.format(reducer))(sg, 'h', 'w')
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    # Test.2: edge readout
    x = dgl.readout_edges(g, 'h', 'w', op=reducer)
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = dgl.readout_edges(sg, 'h', 'w', op=reducer)
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

    x = getattr(dgl, '{}_edges'.format(reducer))(g, 'h', 'w')
    # check correctness
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        sx = getattr(dgl, '{}_edges'.format(reducer))(sg, 'h', 'w')
        subx.append(sx)
    assert F.allclose(x, F.cat(subx, dim=0))

nv-dlasalle's avatar
nv-dlasalle committed
118
@parametrize_idtype
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['dglgraph']))
@pytest.mark.parametrize('descending', [True, False])
def test_topk(g, idtype, descending):
    g = g.astype(idtype).to(F.ctx())
    g.ndata['x'] = F.randn((g.number_of_nodes(), 3))

    # Test.1: to test the case where k > number of nodes.
    dgl.topk_nodes(g, 'x', 100, sortby=-1)

    # Test.2: test correctness
    min_nnodes = F.asnumpy(g.batch_num_nodes()).min()
    if min_nnodes <= 1:
        return
    k = min_nnodes - 1
    val, indices = dgl.topk_nodes(g, 'x', k, descending=descending, sortby=-1)
    print(k)
    print(g.ndata['x'])
    print('val', val)
    print('indices', indices)
    subg = dgl.unbatch(g)
    subval, subidx = [], []
    for sg in subg:
        subx = F.asnumpy(sg.ndata['x'])
        ai = np.argsort(subx[:,-1:].flatten())
        if descending:
            ai = np.ascontiguousarray(ai[::-1])
        subx = np.expand_dims(subx[ai[:k]], 0)
        subval.append(F.tensor(subx))
        subidx.append(F.tensor(np.expand_dims(ai[:k], 0)))
    print(F.cat(subval, dim=0))
    assert F.allclose(val, F.cat(subval, dim=0))
    assert F.allclose(indices, F.cat(subidx, dim=0))

    # Test.3: sorby=None
    dgl.topk_nodes(g, 'x', k, sortby=None)

    g.edata['x'] = F.randn((g.number_of_edges(), 3))

    # Test.4: topk edges where k > number of edges.
    dgl.topk_edges(g, 'x', 100, sortby=-1)

    # Test.5: topk edges test correctness
    min_nedges = F.asnumpy(g.batch_num_edges()).min()
    if min_nedges <= 1:
        return
    k = min_nedges - 1
    val, indices = dgl.topk_edges(g, 'x', k, descending=descending, sortby=-1)
    print(k)
    print(g.edata['x'])
    print('val', val)
    print('indices', indices)
    subg = dgl.unbatch(g)
    subval, subidx = [], []
    for sg in subg:
        subx = F.asnumpy(sg.edata['x'])
        ai = np.argsort(subx[:,-1:].flatten())
        if descending:
            ai = np.ascontiguousarray(ai[::-1])
        subx = np.expand_dims(subx[ai[:k]], 0)
        subval.append(F.tensor(subx))
        subidx.append(F.tensor(np.expand_dims(ai[:k], 0)))
    print(F.cat(subval, dim=0))
    assert F.allclose(val, F.cat(subval, dim=0))
    assert F.allclose(indices, F.cat(subidx, dim=0))

nv-dlasalle's avatar
nv-dlasalle committed
184
@parametrize_idtype
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['dglgraph']))
def test_softmax(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    g.ndata['h'] = F.randn((g.number_of_nodes(), 3))
    g.edata['h'] = F.randn((g.number_of_edges(), 2))

    # Test.1: node readout
    x = dgl.softmax_nodes(g, 'h')
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        subx.append(F.softmax(sg.ndata['h'], dim=0))
    assert F.allclose(x, F.cat(subx, dim=0))

    # Test.2: edge readout
    x = dgl.softmax_edges(g, 'h')
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        subx.append(F.softmax(sg.edata['h'], dim=0))
    assert F.allclose(x, F.cat(subx, dim=0))

nv-dlasalle's avatar
nv-dlasalle committed
207
@parametrize_idtype
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['dglgraph']))
def test_broadcast(idtype, g):
    g = g.astype(idtype).to(F.ctx())
    gfeat = F.randn((g.batch_size, 3))

    # Test.0: broadcast_nodes
    g.ndata['h'] = dgl.broadcast_nodes(g, gfeat)
    subg = dgl.unbatch(g)
    for i, sg in enumerate(subg):
        assert F.allclose(sg.ndata['h'],
                F.repeat(F.reshape(gfeat[i], (1,3)), sg.number_of_nodes(), dim=0))

    # Test.1: broadcast_edges
    g.edata['h'] = dgl.broadcast_edges(g, gfeat)
    subg = dgl.unbatch(g)
    for i, sg in enumerate(subg):
        assert F.allclose(sg.edata['h'],
                F.repeat(F.reshape(gfeat[i], (1,3)), sg.number_of_edges(), dim=0))