gcn_spmv.py 4.2 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn

GCN with SPMV specialization.
"""
import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
14
import dgl.function as fn
Minjie Wang's avatar
Minjie Wang committed
15
from dgl import DGLGraph
16
from dgl.data import register_data_args, load_data
Minjie Wang's avatar
Minjie Wang committed
17

18
class NodeApplyModule(nn.Module):
Minjie Wang's avatar
Minjie Wang committed
19
    def __init__(self, in_feats, out_feats, activation=None):
20
        super(NodeApplyModule, self).__init__()
Mufei Li's avatar
Mufei Li committed
21

Minjie Wang's avatar
Minjie Wang committed
22
23
24
        self.linear = nn.Linear(in_feats, out_feats)
        self.activation = activation

25
    def forward(self, node):
Minjie Wang's avatar
Minjie Wang committed
26
        h = self.linear(node['h'])
Minjie Wang's avatar
Minjie Wang committed
27
28
        if self.activation:
            h = self.activation(h)
Mufei Li's avatar
Mufei Li committed
29
30

        return {'h': h}
Minjie Wang's avatar
Minjie Wang committed
31
32
33
34
35
36
37
38
39
40
41
42

class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.g = g
Mufei Li's avatar
Mufei Li committed
43
44
45
46
47
48

        if dropout:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = 0.

Minjie Wang's avatar
Minjie Wang committed
49
        # input layer
50
        self.layers = nn.ModuleList([NodeApplyModule(in_feats, n_hidden, activation)])
Mufei Li's avatar
Mufei Li committed
51

Minjie Wang's avatar
Minjie Wang committed
52
53
        # hidden layers
        for i in range(n_layers - 1):
54
            self.layers.append(NodeApplyModule(n_hidden, n_hidden, activation))
Mufei Li's avatar
Mufei Li committed
55

Minjie Wang's avatar
Minjie Wang committed
56
        # output layer
57
        self.layers.append(NodeApplyModule(n_hidden, n_classes))
Minjie Wang's avatar
Minjie Wang committed
58
59

    def forward(self, features):
Minjie Wang's avatar
Minjie Wang committed
60
        self.g.set_n_repr({'h' : features})
Mufei Li's avatar
Mufei Li committed
61

Minjie Wang's avatar
Minjie Wang committed
62
63
64
        for layer in self.layers:
            # apply dropout
            if self.dropout:
Mufei Li's avatar
Mufei Li committed
65
66
                self.g.apply_nodes(apply_node_func=
                               lambda node: {'h': self.dropout(node['h'])})
Minjie Wang's avatar
Minjie Wang committed
67
            self.g.update_all(fn.copy_src(src='h', out='m'),
Minjie Wang's avatar
Minjie Wang committed
68
                              fn.sum(msg='m', out='h'),
Minjie Wang's avatar
Minjie Wang committed
69
70
                              layer)
        return self.g.pop_n_repr('h')
Minjie Wang's avatar
Minjie Wang committed
71
72
73

def main(args):
    # load and preprocess dataset
Mufei Li's avatar
Mufei Li committed
74
    # Todo: adjacency normalization
75
76
    data = load_data(args)

Minjie Wang's avatar
Minjie Wang committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    mask = torch.ByteTensor(data.train_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        mask = mask.cuda()

    # create GCN model
    g = DGLGraph(data.graph)
    model = GCN(g,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                F.relu,
                args.dropout)

    if cuda:
        model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        logp = F.log_softmax(logits, 1)
        loss = F.nll_loss(logp[mask], labels[mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
            epoch, loss.item(), np.mean(dur), n_edges / np.mean(dur) / 1000))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
131
    register_data_args(parser)
Minjie Wang's avatar
Minjie Wang committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-3,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    args = parser.parse_args()
    print(args)

    main(args)