test_dist_part.py 8.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import dgl
import json
import numpy as np
import os
import sys
import tempfile
import torch

from dgl.data.utils import load_tensors, load_graphs

from chunk_graph import chunk_graph

def test_part_pipeline():
    # Step0: prepare chunked graph data format

    # A synthetic mini MAG240
    num_institutions = 20
    num_authors = 100
    num_papers = 600

    def rand_edges(num_src, num_dst, num_edges):
        eids = np.random.choice(num_src * num_dst, num_edges, replace=False)
        src = torch.from_numpy(eids // num_dst)
        dst = torch.from_numpy(eids % num_dst)

        return src, dst

    num_cite_edges = 2000
    num_write_edges = 1000
    num_affiliate_edges = 200

    # Structure
    data_dict = {
        ('paper', 'cites', 'paper'): rand_edges(num_papers, num_papers, num_cite_edges),
        ('author', 'writes', 'paper'): rand_edges(num_authors, num_papers, num_write_edges),
        ('author', 'affiliated_with', 'institution'): rand_edges(num_authors, num_institutions, num_affiliate_edges)
    }
    src, dst = data_dict[('author', 'writes', 'paper')]
    data_dict[('paper', 'rev_writes', 'author')] = (dst, src)
    g = dgl.heterograph(data_dict)

    # paper feat, label, year
    num_paper_feats = 3
    paper_feat = np.random.randn(num_papers, num_paper_feats)
    num_classes = 4
    paper_label = np.random.choice(num_classes, num_papers)
    paper_year = np.random.choice(2022, num_papers)

    # edge features
    cite_count = np.random.choice(10, num_cite_edges)
    write_year = np.random.choice(2022, num_write_edges)

    # Save features
    with tempfile.TemporaryDirectory() as root_dir:
        print('root_dir', root_dir)
        input_dir = os.path.join(root_dir, 'data_test')
        os.makedirs(input_dir)
        for sub_d in ['paper', 'cites', 'writes']:
            os.makedirs(os.path.join(input_dir, sub_d))

        paper_feat_path = os.path.join(input_dir, 'paper/feat.npy')
        with open(paper_feat_path, 'wb') as f:
            np.save(f, paper_feat)

        paper_label_path = os.path.join(input_dir, 'paper/label.npy')
        with open(paper_label_path, 'wb') as f:
            np.save(f, paper_label)

        paper_year_path = os.path.join(input_dir, 'paper/year.npy')
        with open(paper_year_path, 'wb') as f:
            np.save(f, paper_year)

        cite_count_path = os.path.join(input_dir, 'cites/count.npy')
        with open(cite_count_path, 'wb') as f:
            np.save(f, cite_count)

        write_year_path = os.path.join(input_dir, 'writes/year.npy')
        with open(write_year_path, 'wb') as f:
            np.save(f, write_year)

        output_dir = os.path.join(root_dir, 'chunked-data')
        num_chunks = 2
        chunk_graph(
            g,
            'mag240m',
            {'paper':
                {
                'feat': paper_feat_path,
                'label': paper_label_path,
                'year': paper_year_path
                }
            },
            {
                'cites': {'count': cite_count_path},
                'writes': {'year': write_year_path},
                # you can put the same data file if they indeed share the features.
                'rev_writes': {'year': write_year_path}
            },
            num_chunks=num_chunks,
            output_path=output_dir)

        # check metadata.json
        json_file = os.path.join(output_dir, 'metadata.json')
        assert os.path.isfile(json_file)
        with open(json_file, 'rb') as f:
            meta_data = json.load(f)
        assert meta_data['graph_name'] == 'mag240m'
        assert len(meta_data['num_nodes_per_chunk'][0]) == num_chunks

        # check edge_index
        output_edge_index_dir = os.path.join(output_dir, 'edge_index')
        for utype, etype, vtype in data_dict.keys():
            fname = ':'.join([utype, etype, vtype])
            for i in range(num_chunks):
                chunk_f_name = os.path.join(output_edge_index_dir, fname + str(i) + '.txt')
                assert os.path.isfile(chunk_f_name)
                with open(chunk_f_name, 'r') as f:
                    header = f.readline()
                    num1, num2 = header.rstrip().split(' ')
                    assert isinstance(int(num1), int)
                    assert isinstance(int(num2), int)

        # check node_data
        output_node_data_dir = os.path.join(output_dir, 'node_data', 'paper')
        for feat in ['feat', 'label', 'year']:
            for i in range(num_chunks):
                chunk_f_name = '{}-{}.npy'.format(feat, i)
                chunk_f_name = os.path.join(output_node_data_dir, chunk_f_name)
                assert os.path.isfile(chunk_f_name)
                feat_array = np.load(chunk_f_name)
                assert feat_array.shape[0] == num_papers // num_chunks

        # check edge_data
        num_edges = {
            'paper:cites:paper': num_cite_edges,
            'author:writes:paper': num_write_edges,
            'paper:rev_writes:author': num_write_edges
        }
        output_edge_data_dir = os.path.join(output_dir, 'edge_data')
        for etype, feat in [
            ['paper:cites:paper', 'count'],
            ['author:writes:paper', 'year'],
            ['paper:rev_writes:author', 'year']
        ]:
            output_edge_sub_dir = os.path.join(output_edge_data_dir, etype)
            for i in range(num_chunks):
                chunk_f_name = '{}-{}.npy'.format(feat, i)
                chunk_f_name = os.path.join(output_edge_sub_dir, chunk_f_name)
                assert os.path.isfile(chunk_f_name)
                feat_array = np.load(chunk_f_name)
                assert feat_array.shape[0] == num_edges[etype] // num_chunks

        # Step1: graph partition
        in_dir = os.path.join(root_dir, 'chunked-data')
        output_dir = os.path.join(root_dir, '2parts')
        os.system('python tools/partition_algo/random_partition.py '\
                  '--metadata {}/metadata.json --output_path {} --num_partitions {}'.format(
                    in_dir, output_dir, num_chunks))
        for ntype in ['author', 'institution', 'paper']:
            fname = os.path.join(output_dir, '{}.txt'.format(ntype))
            with open(fname, 'r') as f:
                header = f.readline().rstrip()
                assert isinstance(int(header), int)

        # Step2: data dispatch
        partition_dir = os.path.join(root_dir, '2parts')
        out_dir = os.path.join(root_dir, 'partitioned')
        ip_config = os.path.join(root_dir, 'ip_config.txt')
        with open(ip_config, 'w') as f:
            f.write('127.0.0.1\n')
            f.write('127.0.0.2\n')

        os.system('python tools/dispatch_data.py '\
                  '--in-dir {} --partitions-dir {} --out-dir {} --ip-config {}'.format(
                    in_dir, partition_dir, out_dir, ip_config))

        # check metadata.json
        meta_fname = os.path.join(out_dir, 'metadata.json')
        with open(meta_fname, 'rb') as f:
            meta_data = json.load(f)

        all_etypes = ['affiliated_with', 'writes', 'cites', 'rev_writes']
        for etype in all_etypes:
            assert len(meta_data['edge_map'][etype]) == num_chunks
        assert meta_data['etypes'].keys() == set(all_etypes)
        assert meta_data['graph_name'] == 'mag240m'

        all_ntypes = ['author', 'institution', 'paper']
        for ntype in all_ntypes:
            assert len(meta_data['node_map'][ntype]) == num_chunks
        assert meta_data['ntypes'].keys() == set(all_ntypes)
        assert meta_data['num_edges'] == 4200
        assert meta_data['num_nodes'] == 720
        assert meta_data['num_parts'] == num_chunks

        for i in range(num_chunks):
            sub_dir = 'part-' + str(i)
            assert meta_data[sub_dir]['node_feats'] == 'part{}/node_feat.dgl'.format(i)
            assert meta_data[sub_dir]['edge_feats'] == 'part{}/edge_feat.dgl'.format(i)
            assert meta_data[sub_dir]['part_graph'] == 'part{}/graph.dgl'.format(i)

            # check data
            sub_dir = os.path.join(out_dir, 'part' + str(i))

            # graph.dgl
            fname = os.path.join(sub_dir, 'graph.dgl')
            assert os.path.isfile(fname)
            g_list, data_dict = load_graphs(fname)
            g = g_list[0]
            assert isinstance(g, dgl.DGLGraph)

            # node_feat.dgl
            fname = os.path.join(sub_dir, 'node_feat.dgl')
            assert os.path.isfile(fname)
            tensor_dict = load_tensors(fname)
            all_tensors = ['paper/feat', 'paper/label', 'paper/year']
            assert tensor_dict.keys() == set(all_tensors)
            for key in all_tensors:
                assert isinstance(tensor_dict[key], torch.Tensor)

            # edge_feat.dgl
            fname = os.path.join(sub_dir, 'edge_feat.dgl')
            assert os.path.isfile(fname)
            tensor_dict = load_tensors(fname)

if __name__ == '__main__':
    test_part_pipeline()