README.md 7.08 KB
Newer Older
Ereboas's avatar
Ereboas committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# NGNN + GraphSage/GCN

## Introduction

This is an example of implementing [NGNN](https://arxiv.org/abs/2111.11638) for link prediction in DGL.

We use a model-agnostic methodology, namely Network In Graph Neural Network (NGNN), which allows arbitrary GNN models to increase their model capacity.

The script in this folder experiments full-batch GCN/GraphSage (with/without NGNN) on the datasets: ogbl-ddi, ogbl-collab and ogbl-ppa.

## Installation requirements
```
ogb>=1.3.3
torch>=1.11.0
dgl>=0.8
```

## Experiments

We do not fix random seeds at all, and take over 10 runs for all models. All models are trained on a single V100 GPU with 16GB memory.

### ogbl-ddi

#### performance

<table>
   <tr>
      <th></th>
      <th colspan=3 style="text-align: center;">test set</th>
      <th colspan=3 style="text-align: center;">validation set</th>
      <th>#parameters</th>
   </tr>
   <tr>
      <td></td>
      <td>Hits@20</td>
      <td>Hits@50</td>
      <td>Hits@100</td>
      <td>Hits@20</td>
      <td>Hits@50</td>
      <td>Hits@100</td>
      <td></td>
   </tr>
   <tr>
      <td>GCN+NGNN(paper)</td>
      <td>48.22% ± 7.00%</td>
      <td>82.56% ± 4.03%</td>
      <td>89.48% ± 1.68%</td>
      <td>65.95% ± 1.16%</td>
      <td>70.24% ± 0.50%</td>
      <td>72.54% ± 0.62%</td>
      <td rowspan=2>1,487,361</td>
   </tr>
   <tr>
      <td>GCN+NGNN(ours; 50runs)</td>
      <td><b>54.83% ± 15.81%</b></td>
      <td><b>93.15% ± 2.59%</b></td>
      <td><b>97.05% ± 0.56%</b></td>
      <td>71.21% ± 0.38%</td>
      <td>73.55% ± 0.25%</td>
      <td>76.24% ± 1.33%</td>
   </tr>
   <tr>
      <td>GraphSage+NGNN(paper)</td>
      <td>60.75% ± 4.94%</td>
      <td>84.58% ± 1.89%</td>
      <td>92.58% ± 0.88%</td>
      <td>68.05% ± 0.68%</td>
      <td>71.14% ± 0.33%</td>
      <td>72.77% ± 0.09%</td>
      <td rowspan=2>1,618,433</td>
   </tr>
   <tr>
      <td>GraphSage+NGNN(ours; 50runs)</td>
      <td>57.70% ± 15.23%</td>
      <td><b>96.18% ± 0.94%</b></td>
      <td><b>98.58% ± 0.17%</b></td>
      <td>73.23% ± 0.40%</td>
      <td>87.20% ± 5.29%</td>
      <td>98.71% ± 0.22%</td>
   </tr>
</table>

A 3-layer MLP is used as LinkPredictor here, while a 2-layer one is used by the NGNN paper. This is the main reason for the better performance.

#### Reproduction of performance

- GCN + NGNN
```{.bash}
python main.py --dataset ogbl-ddi --device 0 --ngnn_type input --epochs 800 --dropout 0.5 --num_layers 2 --lr 0.0025 --batch_size 16384 --runs 50
```

- GraphSage + NGNN
```{.bash}
python main.py --dataset ogbl-ddi --device 1 --ngnn_type input --use_sage --epochs 600 --dropout 0.25 --num_layers 2 --lr 0.0012 --batch_size 32768 --runs 50
```

### ogbl-collab

#### Performance

<table>
   <tr>
      <th></th>
      <th colspan=3 style="text-align: center;">test set</th>
      <th colspan=3 style="text-align: center;">validation set</th>
      <th>#parameters</th>
   </tr>
   <tr>
      <td></td>
      <td>Hits@10</td>
      <td>Hits@50</td>
      <td>Hits@100</td>
      <td>Hits@10</td>
      <td>Hits@50</td>
      <td>Hits@100</td>
      <td></td>
   </tr>
   <tr>
      <td>GCN+NGNN(paper)</td>
      <td>36.69% ± 0.82%</td>
      <td>51.83% ± 0.50%</td>
      <td>57.41% ± 0.22%</td>
      <td>44.97% ± 0.97%</td>
      <td>60.84% ± 0.63%</td>
      <td>66.09% ± 0.30%</td>
      <td rowspan=2>428,033</td>
   </tr>
   <tr>
      <td>GCN+NGNN(ours)</td>
      <td><b>39.29% ± 1.21%</b></td>
      <td><b>53.48% ± 0.40%</b></td>
      <td>58.34% ± 0.45%</td>
      <td>48.28% ± 1.39%</td>
      <td>62.73% ± 0.40%</td>
      <td>67.13% ± 0.39%</td>
   </tr>
   <tr>
      <td>GraphSage+NGNN(paper)</td>
      <td>36.83% ± 2.56%</td>
      <td>52.62% ± 1.04%</td>
      <td>57.96% ± 0.56%</td>
      <td>45.62% ± 2.56%</td>
      <td>61.34% ± 1.05%</td>
      <td>66.26% ± 0.44%</td>
      <td rowspan=2>591,873</td>
   </tr>
   <tr>
      <td>GraphSage+NGNN(ours)</td>
      <td><b>40.30% ± 1.03%</b></td>
      <td>53.59% ± 0.56%</td>
      <td>58.75% ± 0.57%</td>
      <td>49.85% ± 1.07%</td>
      <td>62.81% ± 0.46%</td>
      <td>67.33% ± 0.38%</td>
   </tr>
</table>

#### Reproduction of performance

- GCN + NGNN
```{.bash}
python main.py --dataset ogbl-collab --device 2 --ngnn_type hidden --epochs 600 --dropout 0.2 --num_layers 3 --lr 0.001 --batch_size 32768 --runs 10
```

- GraphSage + NGNN
```{.bash}
python main.py --dataset ogbl-collab --device 3 --ngnn_type input --use_sage --epochs 800 --dropout 0.2 --num_layers 3 --lr 0.0005 --batch_size 32768 --runs 10
```

### ogbl-ppa

#### Performance

<table>
   <tr>
      <th></th>
      <th colspan=3 style="text-align: center;">test set</th>
      <th colspan=3 style="text-align: center;">validation set</th>
      <th>#parameters</th>
   </tr>
   <tr>
      <td></td>
      <td>Hits@10</td>
      <td>Hits@50</td>
      <td>Hits@100</td>
      <td>Hits@10</td>
      <td>Hits@50</td>
      <td>Hits@100</td>
      <td></td>
   </tr>
   <tr>
      <td>GCN+NGNN(paper)</td>
      <td>5.64% ± 0.93%</td>
      <td>18.44% ± 1.88%</td>
      <td>26.78% ± 0.9%</td>
      <td>8.14% ± 0.71%</td>
      <td>19.69% ± 0.94%</td>
      <td>27.86% ± 0.81%</td>
      <td rowspan=1>673,281</td>
   </tr>
   <tr>
      <td>GCN+NGNN(ours)</td>
      <td><b>13.07% ± 3.24%</b></td>
      <td><b>28.55% ± 1.62%</b></td>
      <td><b>36.83% ± 0.99%</b></td>
      <td>16.36% ± 1.89%</td>
      <td>30.56% ± 0.72%</td>
      <td>38.34% ± 0.82%</td>
      <td>410,113</td>
   </tr>
   <tr>
      <td>GraphSage+NGNN(paper)</td>
      <td>3.52% ± 1.24%</td>
      <td>15.55% ± 1.92%</td>
      <td>24.45% ± 2.34%</td>
      <td>5.59% ± 0.93%</td>
      <td>17.21% ± 0.69%</td>
      <td>25.42% ± 0.50%</td>
      <td rowspan=1>819,201</td>
   </tr>
   <tr>
      <td>GraphSage+NGNN(ours)</td>
      <td><b>11.73% ± 2.42%</b></td>
      <td><b>29.88% ± 1.84%</b></td>
      <td><b>40.05% ± 1.38%</b></td>
      <td>14.73% ± 2.36%</td>
      <td>31.59% ± 1.72%</td>
      <td>40.58% ± 1.23%</td>
      <td>556,033</td>
   </tr>
</table>

The main difference between this implementation and NGNN paper is the position of NGNN (all -> input).

#### Reproduction of performance

- GCN + NGNN
```{.bash}
python main.py --dataset ogbl-ppa --device 4 --ngnn_type input --epochs 80 --dropout 0.2 --num_layers 3 --lr 0.001 --batch_size 49152 --runs 10
```

- GraphSage + NGNN
```{.bash}
python main.py --dataset ogbl-ppa --device 5 --ngnn_type input --use_sage --epochs 80 --dropout 0.2 --num_layers 3 --lr 0.001 --batch_size 49152 --runs 10
```

## References

```{.tex}
@article{DBLP:journals/corr/abs-2111-11638,
  author    = {Xiang Song and
               Runjie Ma and
               Jiahang Li and
               Muhan Zhang and
               David Paul Wipf},
  title     = {Network In Graph Neural Network},
  journal   = {CoRR},
  volume    = {abs/2111.11638},
  year      = {2021},
  url       = {https://arxiv.org/abs/2111.11638},
  eprinttype = {arXiv},
  eprint    = {2111.11638},
  timestamp = {Fri, 26 Nov 2021 13:48:43 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2111-11638.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```