4_batch.py 9.98 KB
Newer Older
1
2
3
"""
.. currentmodule:: dgl

4
5
Graph Classification Tutorial
=============================
6
7
8
9
10

**Author**: `Mufei Li <https://github.com/mufeili>`_,
`Minjie Wang <https://jermainewang.github.io/>`_,
`Zheng Zhang <https://shanghai.nyu.edu/academics/faculty/directory/zheng-zhang>`_.

11
12
13
In this tutorial, you learn how to use DGL to batch multiple graphs of variable size and shape. The 
tutorial also demonstrates training a graph neural network for a simple graph classification task.

14
Graph classification is an important problem
15
16
17
with applications across many fields, such as bioinformatics, chemoinformatics, social
network analysis, urban computing, and cybersecurity. Applying graph neural
networks to this problem has been a popular approach recently. This can be seen in the following reserach references: 
18
19
20
21
22
23
`Ying et al., 2018 <https://arxiv.org/abs/1806.08804>`_,
`Cangea et al., 2018 <https://arxiv.org/abs/1811.01287>`_,
`Knyazev et al., 2018 <https://arxiv.org/abs/1811.09595>`_,
`Bianchi et al., 2019 <https://arxiv.org/abs/1901.01343>`_,
`Liao et al., 2019 <https://arxiv.org/abs/1901.01484>`_,
`Gao et al., 2019 <https://openreview.net/forum?id=HJePRoAct7>`_).
24
25
26
27

"""

###############################################################################
28
# Simple graph classification task
29
# --------------------------------
30
31
# In this tutorial, you learn how to perform batched graph classification
# with DGL. The example task objective is to classify eight types of topologies shown here.
32
#
Jinjing Zhou's avatar
Jinjing Zhou committed
33
# .. image:: https://data.dgl.ai/tutorial/batch/dataset_overview.png
34
35
#     :align: center
#
36
# Implement a synthetic dataset :class:`data.MiniGCDataset` in DGL. The dataset has eight 
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# different types of graphs and each class has the same number of graph samples.

from dgl.data import MiniGCDataset
import matplotlib.pyplot as plt
import networkx as nx
# A dataset with 80 samples, each graph is
# of size [10, 20]
dataset = MiniGCDataset(80, 10, 20)
graph, label = dataset[0]
fig, ax = plt.subplots()
nx.draw(graph.to_networkx(), ax=ax)
ax.set_title('Class: {:d}'.format(label))
plt.show()

###############################################################################
# Form a graph mini-batch
# -----------------------
54
# To train neural networks efficiently, a common practice is to batch
55
# multiple samples together to form a mini-batch. Batching fixed-shaped tensor
56
57
# inputs is common. For example, batching two images of size 28 x 28
# gives a tensor of shape 2 x 28 x 28. By contrast, batching graph inputs
58
59
60
# has two challenges:
#
# * Graphs are sparse.
61
# * Graphs can have various length. For example, number of nodes and edges.
62
#
63
64
65
# To address this, DGL provides a :func:`dgl.batch` API. It leverages the idea that
# a batch of graphs can be viewed as a large graph that has many disjointed 
# connected components. Below is a visualization that gives the general idea.
66
#
Jinjing Zhou's avatar
Jinjing Zhou committed
67
# .. image:: https://data.dgl.ai/tutorial/batch/batch.png
68
69
70
#     :width: 400pt
#     :align: center
#
71
# Define the following ``collate`` function to form a mini-batch from a given
72
73
74
# list of graph and label pairs.

import dgl
Minjie Wang's avatar
Minjie Wang committed
75
import torch
76
77
78
79
80
81
82
83
84

def collate(samples):
    # The input `samples` is a list of pairs
    #  (graph, label).
    graphs, labels = map(list, zip(*samples))
    batched_graph = dgl.batch(graphs)
    return batched_graph, torch.tensor(labels)

###############################################################################
85
86
# The return type of :func:`dgl.batch` is still a graph. In the same way, 
# a batch of tensors is still a tensor. This means that any code that works
87
# for one graph immediately works for a batch of graphs. More importantly,
88
# because DGL processes messages on all nodes and edges in parallel, this greatly
89
90
# improves efficiency.
#
91
# Graph classifier
92
# ----------------
93
# Graph classification proceeds as follows.
94
#
Jinjing Zhou's avatar
Jinjing Zhou committed
95
# .. image:: https://data.dgl.ai/tutorial/batch/graph_classifier.png
96
#
97
98
99
100
101
# From a batch of graphs, perform message passing and graph convolution
# for nodes to communicate with others. After message passing, compute a
# tensor for graph representation from node (and edge) attributes. This step might 
# be called readout or aggregation. Finally, the graph 
# representations are fed into a classifier :math:`g` to predict the graph labels.
102
#
Minjie Wang's avatar
Minjie Wang committed
103
# Graph convolution layer can be found in the ``dgl.nn.<backend>`` submodule.
104

Minjie Wang's avatar
Minjie Wang committed
105
from dgl.nn.pytorch import GraphConv
106
107

###############################################################################
108
# Readout and classification
109
# --------------------------
110
111
112
# For this demonstration, consider initial node features to be their degrees.
# After two rounds of graph convolution, perform a graph readout by averaging
# over all node features for each graph in the batch.
113
114
115
116
117
118
#
# .. math::
#
#    h_g=\frac{1}{|\mathcal{V}|}\sum_{v\in\mathcal{V}}h_{v}
#
# In DGL, :func:`dgl.mean_nodes` handles this task for a batch of
119
# graphs with variable size. You then feed the graph representations into a
120
# classifier with one linear layer to obtain pre-softmax logits.
121

Minjie Wang's avatar
Minjie Wang committed
122
import torch.nn as nn
123
124
125
126
127
import torch.nn.functional as F

class Classifier(nn.Module):
    def __init__(self, in_dim, hidden_dim, n_classes):
        super(Classifier, self).__init__()
Minjie Wang's avatar
Minjie Wang committed
128
129
        self.conv1 = GraphConv(in_dim, hidden_dim)
        self.conv2 = GraphConv(hidden_dim, hidden_dim)
130
131
132
        self.classify = nn.Linear(hidden_dim, n_classes)

    def forward(self, g):
Minjie Wang's avatar
Minjie Wang committed
133
134
        # Use node degree as the initial node feature. For undirected graphs, the in-degree
        # is the same as the out_degree.
135
        h = g.in_degrees().view(-1, 1).float()
Minjie Wang's avatar
Minjie Wang committed
136
137
138
        # Perform graph convolution and activation function.
        h = F.relu(self.conv1(g, h))
        h = F.relu(self.conv2(g, h))
139
        g.ndata['h'] = h
Minjie Wang's avatar
Minjie Wang committed
140
        # Calculate graph representation by averaging all the node representations.
141
142
143
144
        hg = dgl.mean_nodes(g, 'h')
        return self.classify(hg)

###############################################################################
145
# Setup and training
146
# ------------------
147
# Create a synthetic dataset of :math:`400` graphs with :math:`10` ~
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# :math:`20` nodes. :math:`320` graphs constitute a training set and
# :math:`80` graphs constitute a test set.

import torch.optim as optim
from torch.utils.data import DataLoader

# Create training and test sets.
trainset = MiniGCDataset(320, 10, 20)
testset = MiniGCDataset(80, 10, 20)
# Use PyTorch's DataLoader and the collate function
# defined before.
data_loader = DataLoader(trainset, batch_size=32, shuffle=True,
                         collate_fn=collate)

# Create model
model = Classifier(1, 256, trainset.num_classes)
loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
model.train()

epoch_losses = []
for epoch in range(80):
    epoch_loss = 0
    for iter, (bg, label) in enumerate(data_loader):
        prediction = model(bg)
        loss = loss_func(prediction, label)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        epoch_loss += loss.detach().item()
    epoch_loss /= (iter + 1)
    print('Epoch {}, loss {:.4f}'.format(epoch, epoch_loss))
    epoch_losses.append(epoch_loss)

###############################################################################
183
# The learning curve of a run is presented below.
184
185
186
187
188
189

plt.title('cross entropy averaged over minibatches')
plt.plot(epoch_losses)
plt.show()

###############################################################################
190
191
# The trained model is evaluated on the test set created. To deploy
# the tutorial, restrict the running time to get a higher
192
193
194
# accuracy (:math:`80` % ~ :math:`90` %) than the ones printed below.

model.eval()
195
# Convert a list of tuples to two lists
196
197
198
199
200
201
202
203
204
205
206
207
test_X, test_Y = map(list, zip(*testset))
test_bg = dgl.batch(test_X)
test_Y = torch.tensor(test_Y).float().view(-1, 1)
probs_Y = torch.softmax(model(test_bg), 1)
sampled_Y = torch.multinomial(probs_Y, 1)
argmax_Y = torch.max(probs_Y, 1)[1].view(-1, 1)
print('Accuracy of sampled predictions on the test set: {:.4f}%'.format(
    (test_Y == sampled_Y.float()).sum().item() / len(test_Y) * 100))
print('Accuracy of argmax predictions on the test set: {:4f}%'.format(
    (test_Y == argmax_Y.float()).sum().item() / len(test_Y) * 100))

###############################################################################
208
# The animation here plots the probability that a trained model predicts the correct graph type.
209
#
Jinjing Zhou's avatar
Jinjing Zhou committed
210
# .. image:: https://data.dgl.ai/tutorial/batch/test_eval4.gif
211
#
212
# To understand the node and graph representations that a trained model learned,
213
214
215
# we use `t-SNE, <https://lvdmaaten.github.io/tsne/>`_ for dimensionality reduction
# and visualization.
#
Jinjing Zhou's avatar
Jinjing Zhou committed
216
# .. image:: https://data.dgl.ai/tutorial/batch/tsne_node2.png
217
218
#     :align: center
#
Jinjing Zhou's avatar
Jinjing Zhou committed
219
# .. image:: https://data.dgl.ai/tutorial/batch/tsne_graph2.png
220
221
#     :align: center
#
222
223
# The two small figures on the top separately visualize node representations after one and two
# layers of graph convolution. The figure on the bottom visualizes
224
# the pre-softmax logits for graphs as graph representations.
225
226
#
# While the visualization does suggest some clustering effects of the node features,
227
228
# you would not expect a perfect result. Node degrees are deterministic for
# these node features. The graph features are improved when separated.
229
#
230
# What's next?
231
# ------------
232
233
234
235
236
237
# Graph classification with graph neural networks is still a new field.
# It's waiting for people to bring more exciting discoveries. The work requires 
# mapping different graphs to different embeddings, while preserving
# their structural similarity in the embedding space. To learn more about it, see 
# `How Powerful Are Graph Neural Networks? <https://arxiv.org/abs/1810.00826>`_ a research paper  
# published for the International Conference on Learning Representations 2019.
238
#
239
# For more examples about batched graph processing, see the following:
240
#
241
242
# * Tutorials for `Tree LSTM <https://docs.dgl.ai/tutorials/models/2_small_graph/3_tree-lstm.html>`_ and `Deep Generative Models of Graphs <https://docs.dgl.ai/tutorials/models/3_generative_model/5_dgmg.html>`_
# * An example implementation of `Junction Tree VAE <https://github.com/dmlc/dgl/tree/master/examples/pytorch/jtnn>`_