gcn_batch.py 4.03 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn

GCN with batch processing
"""
import argparse
import numpy as np
import time
import mxnet as mx
from mxnet import gluon
import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data

17
18
def gcn_msg(edge):
    return {'m': edge.src['h']}
Da Zheng's avatar
Da Zheng committed
19

20
21
def gcn_reduce(node):
    return {'accum': mx.nd.sum(node.mailbox['m'], 1)}
Da Zheng's avatar
Da Zheng committed
22
23
24
25
26
27
28

class NodeUpdateModule(gluon.Block):
    def __init__(self, out_feats, activation=None):
        super(NodeUpdateModule, self).__init__()
        self.linear = gluon.nn.Dense(out_feats, activation=activation)

    def forward(self, node):
29
        return {'h': self.linear(node.data['accum'])}
Da Zheng's avatar
Da Zheng committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

class GCN(gluon.Block):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.g = g
        self.dropout = dropout
        # input layer
        self.layers = gluon.nn.Sequential()
        self.layers.add(NodeUpdateModule(n_hidden, activation))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.add(NodeUpdateModule(n_hidden, activation))
        # output layer
        self.layers.add(NodeUpdateModule(n_classes))

    def forward(self, features):
53
        self.g.ndata['h'] = features
Da Zheng's avatar
Da Zheng committed
54
55
56
        for layer in self.layers:
            # apply dropout
            if self.dropout:
57
58
                val = F.dropout(self.g.ndata['h'], p=self.dropout)
                self.g.ndata['h'] = val
Da Zheng's avatar
Da Zheng committed
59
            self.g.update_all(gcn_msg, gcn_reduce, layer)
60
        return self.g.ndata.pop('h')
Da Zheng's avatar
Da Zheng committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

def main(args):
    # load and preprocess dataset
    data = load_data(args)

    features = mx.nd.array(data.features)
    labels = mx.nd.array(data.labels)
    mask = mx.nd.array(data.train_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    if args.gpu <= 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        features = features.as_in_context(mx.gpu(0))
        labels = labels.as_in_context(mx.gpu(0))
        mask = mask.as_in_context(mx.gpu(0))
        ctx = mx.gpu(0)

    # create GCN model
    g = DGLGraph(data.graph)
    model = GCN(g,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                'relu',
                args.dropout)
    model.initialize(ctx=ctx)

    # use optimizer
    trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr})

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            logits = model(features)
            loss = mx.nd.softmax_cross_entropy(logits, labels)

        #optimizer.zero_grad()
        loss.backward()
        trainer.step(features.shape[0])

        if epoch >= 3:
            dur.append(time.time() - t0)
            print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
                epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-3,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    args = parser.parse_args()

    main(args)