csr_sum.cc 4.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/csr_sum.cc
 * \brief CSR Summation
 */

#include <dgl/array.h>
#include <parallel_hashmap/phmap.h>
#include <vector>
#include "array_utils.h"

namespace dgl {

using dgl::runtime::NDArray;

namespace aten {

namespace {

// TODO(BarclayII): avoid using map for sorted CSRs
template <typename IdType>
void CountNNZPerRow(
    const std::vector<const IdType*>& A_indptr,
    const std::vector<const IdType*>& A_indices,
    IdType* C_indptr_data,
    int64_t M) {
  int64_t n = A_indptr.size();
  phmap::flat_hash_set<IdType> set;
#pragma omp parallel for firstprivate(set)
  for (IdType i = 0; i < M; ++i) {
    set.clear();
    for (int64_t k = 0; k < n; ++k) {
      for (IdType u = A_indptr[k][i]; u < A_indptr[k][i + 1]; ++u)
        set.insert(A_indices[k][u]);
    }
    C_indptr_data[i] = set.size();
  }
}

template <typename IdType>
int64_t ComputeIndptrInPlace(IdType* C_indptr_data, int64_t M) {
  int64_t nnz = 0;
  IdType len = 0;
  for (IdType i = 0; i < M; ++i) {
    len = C_indptr_data[i];
    C_indptr_data[i] = nnz;
    nnz += len;
  }
  C_indptr_data[M] = nnz;
  return nnz;
}

template <typename IdType, typename DType>
void ComputeIndicesAndData(
    const std::vector<const IdType*>& A_indptr,
    const std::vector<const IdType*>& A_indices,
    const std::vector<const IdType*>& A_eids,
    const std::vector<const DType*>& A_data,
    const IdType* C_indptr_data,
    IdType* C_indices_data,
    DType* C_weights_data,
    int64_t M) {
  int64_t n = A_indptr.size();
  phmap::flat_hash_map<IdType, DType> map;
#pragma omp parallel for firstprivate(map)
  for (int64_t i = 0; i < M; ++i) {
    map.clear();
    for (int64_t k = 0; k < n; ++k) {
      for (IdType u = A_indptr[k][i]; u < A_indptr[k][i + 1]; ++u) {
        IdType kA = A_indices[k][u];
        DType vA = A_data[k][A_eids[k] ? A_eids[k][u] : u];
        map[kA] += vA;
      }
    }

    IdType j = C_indptr_data[i];
    for (auto it : map) {
      C_indices_data[j] = it.first;
      C_weights_data[j] = it.second;
      ++j;
    }
  }
}

};  // namespace

template <int XPU, typename IdType, typename DType>
std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "List of matrices can't be empty.";
  CHECK_EQ(A.size(), A_weights.size()) << "List of matrices and weights must have same length";
  const int64_t M = A[0].num_rows;
  const int64_t N = A[0].num_cols;
  const int64_t n = A.size();

  std::vector<bool> A_has_eid(n);
  std::vector<const IdType*> A_indptr(n);
  std::vector<const IdType*> A_indices(n);
  std::vector<const IdType*> A_eids(n);
  std::vector<const DType*> A_data(n);

  for (int64_t i = 0; i < n; ++i) {
    const CSRMatrix& csr = A[i];
    const NDArray& data = A_weights[i];
    A_has_eid[i] = !IsNullArray(csr.data);
    A_indptr[i] = csr.indptr.Ptr<IdType>();
    A_indices[i] = csr.indices.Ptr<IdType>();
    A_eids[i] = A_has_eid[i] ? csr.data.Ptr<IdType>() : nullptr;
    A_data[i] = data.Ptr<DType>();
  }

  IdArray C_indptr = IdArray::Empty({M + 1}, A[0].indptr->dtype, A[0].indptr->ctx);
  IdType* C_indptr_data = C_indptr.Ptr<IdType>();

  CountNNZPerRow<IdType>(A_indptr, A_indices, C_indptr_data, M);
  IdType nnz = ComputeIndptrInPlace<IdType>(C_indptr_data, M);
  // Allocate indices and weights array
  IdArray C_indices = IdArray::Empty({nnz}, A[0].indices->dtype, A[0].indices->ctx);
  NDArray C_weights = NDArray::Empty({nnz}, A_weights[0]->dtype, A_weights[0]->ctx);
  IdType* C_indices_data = C_indices.Ptr<IdType>();
  DType* C_weights_data = C_weights.Ptr<DType>();
  ComputeIndicesAndData<IdType, DType>(
      A_indptr, A_indices, A_eids, A_data,
      C_indptr_data, C_indices_data, C_weights_data, M);

  return {CSRMatrix(M, N, C_indptr, C_indices), C_weights};
}

template std::pair<CSRMatrix, NDArray> CSRSum<kDLCPU, int32_t, float>(
    const std::vector<CSRMatrix>&, const std::vector<NDArray>&);
template std::pair<CSRMatrix, NDArray> CSRSum<kDLCPU, int64_t, float>(
    const std::vector<CSRMatrix>&, const std::vector<NDArray>&);
template std::pair<CSRMatrix, NDArray> CSRSum<kDLCPU, int32_t, double>(
    const std::vector<CSRMatrix>&, const std::vector<NDArray>&);
template std::pair<CSRMatrix, NDArray> CSRSum<kDLCPU, int64_t, double>(
    const std::vector<CSRMatrix>&, const std::vector<NDArray>&);

};  // namespace aten
};  // namespace dgl