array_op.h 8.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/array_op.h
 * \brief Array operator templates
 */
#ifndef DGL_ARRAY_ARRAY_OP_H_
#define DGL_ARRAY_ARRAY_OP_H_

#include <dgl/array.h>
10
#include <dgl/graph_traversal.h>
11
#include <vector>
12
13
#include <tuple>
#include <utility>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

namespace dgl {
namespace aten {
namespace impl {

template <DLDeviceType XPU, typename IdType>
IdArray Full(IdType val, int64_t length, DLContext ctx);

template <DLDeviceType XPU, typename IdType>
IdArray Range(IdType low, IdType high, DLContext ctx);

template <DLDeviceType XPU, typename IdType>
IdArray AsNumBits(IdArray arr, uint8_t bits);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdArray rhs);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdArray lhs, IdType rhs);

template <DLDeviceType XPU, typename IdType, typename Op>
IdArray BinaryElewise(IdType lhs, IdArray rhs);

37
38
39
template <DLDeviceType XPU, typename IdType, typename Op>
IdArray UnaryElewise(IdArray array);

40
41
42
template <DLDeviceType XPU, typename IdType>
IdArray HStack(IdArray arr1, IdArray arr2);

43
44
template <DLDeviceType XPU, typename DType, typename IdType>
NDArray IndexSelect(NDArray array, IdArray index);
45

46
template <DLDeviceType XPU, typename DType>
47
DType IndexSelect(NDArray array, int64_t index);
48

Jinjing Zhou's avatar
Jinjing Zhou committed
49
50
51
template <DLDeviceType XPU, typename DType>
IdArray NonZero(BoolArray bool_arr);

52
53
54
55
56
57
template <DLDeviceType XPU, typename DType, typename IdType>
NDArray Scatter(NDArray array, IdArray indices);

template <DLDeviceType XPU, typename DType, typename IdType>
NDArray Repeat(NDArray array, IdArray repeats);

58
59
60
template <DLDeviceType XPU, typename IdType>
IdArray Relabel_(const std::vector<IdArray>& arrays);

61
62
63
template <DLDeviceType XPU, typename IdType>
NDArray Concat(const std::vector<IdArray>& arrays);

64
65
66
67
68
69
template <DLDeviceType XPU, typename DType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, DType pad_value);

template <DLDeviceType XPU, typename DType, typename IdType>
std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths);

70
71
72
template <DLDeviceType XPU, typename IdType>
IdArray CumSum(IdArray array, bool prepend_zero);

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// sparse arrays

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray CSRIsNonZero(CSRMatrix csr, runtime::NDArray row, runtime::NDArray col);

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr);

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray CSRGetRowNNZ(CSRMatrix csr, runtime::NDArray row);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row);

93
template <DLDeviceType XPU, typename IdType>
94
95
runtime::NDArray CSRGetRowData(CSRMatrix csr, int64_t row);

96
97
98
template <DLDeviceType XPU, typename IdType>
bool CSRIsSorted(CSRMatrix csr);

99
template <DLDeviceType XPU, typename IdType>
100
101
runtime::NDArray CSRGetData(CSRMatrix csr, int64_t row, int64_t col);

102
template <DLDeviceType XPU, typename IdType>
103
104
runtime::NDArray CSRGetData(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

105
template <DLDeviceType XPU, typename IdType>
106
107
108
std::vector<runtime::NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

109
template <DLDeviceType XPU, typename IdType>
110
111
112
113
114
115
116
117
118
119
CSRMatrix CSRTranspose(CSRMatrix csr);

// Convert CSR to COO
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr);

// Convert CSR to COO using data array as order
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr);

120
template <DLDeviceType XPU, typename IdType>
121
122
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end);

123
template <DLDeviceType XPU, typename IdType>
124
125
CSRMatrix CSRSliceRows(CSRMatrix csr, runtime::NDArray rows);

126
template <DLDeviceType XPU, typename IdType>
127
128
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

129
130
131
template <DLDeviceType XPU, typename IdType>
void CSRSort_(CSRMatrix* csr);

Da Zheng's avatar
Da Zheng committed
132
133
134
135
136
137
template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids);

template <DLDeviceType XPU, typename IdType>
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids);

138
139
140
template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries);

141
142
143
144
145
146
147
148
149
150
// FloatType is the type of probability data.
template <DLDeviceType XPU, typename IdType, typename FloatType>
COOMatrix CSRRowWiseSampling(
    CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace);

template <DLDeviceType XPU, typename IdType>
COOMatrix CSRRowWiseSamplingUniform(
    CSRMatrix mat, IdArray rows, int64_t num_samples, bool replace);

// FloatType is the type of weight data.
151
template <DLDeviceType XPU, typename IdType, typename DType>
152
COOMatrix CSRRowWiseTopk(
153
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending);
154

155
156
template <DLDeviceType XPU, typename IdType>
std::tuple<CSRMatrix, IdArray, IdArray> CSRToSimple(CSRMatrix csr);
157

158
///////////////////////////////////////////////////////////////////////////////////////////
Da Zheng's avatar
Da Zheng committed
159

160
161
162
163
164
165
template <DLDeviceType XPU, typename IdType>
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray COOIsNonZero(COOMatrix coo, runtime::NDArray row, runtime::NDArray col);

166
167
168
template <DLDeviceType XPU, typename IdType>
bool COOHasDuplicate(COOMatrix coo);

169
170
171
172
173
174
template <DLDeviceType XPU, typename IdType>
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row);

template <DLDeviceType XPU, typename IdType>
runtime::NDArray COOGetRowNNZ(COOMatrix coo, runtime::NDArray row);

175
template <DLDeviceType XPU, typename IdType>
176
177
178
std::pair<runtime::NDArray, runtime::NDArray>
COOGetRowDataAndIndices(COOMatrix coo, int64_t row);

179
template <DLDeviceType XPU, typename IdType>
180
181
runtime::NDArray COOGetData(COOMatrix coo, int64_t row, int64_t col);

182
template <DLDeviceType XPU, typename IdType>
183
184
185
std::vector<runtime::NDArray> COOGetDataAndIndices(
    COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

186
template <DLDeviceType XPU, typename IdType>
187
188
COOMatrix COOTranspose(COOMatrix coo);

189
template <DLDeviceType XPU, typename IdType>
190
191
CSRMatrix COOToCSR(COOMatrix coo);

192
template <DLDeviceType XPU, typename IdType>
193
194
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end);

195
template <DLDeviceType XPU, typename IdType>
196
197
COOMatrix COOSliceRows(COOMatrix coo, runtime::NDArray rows);

198
template <DLDeviceType XPU, typename IdType>
199
200
COOMatrix COOSliceMatrix(COOMatrix coo, runtime::NDArray rows, runtime::NDArray cols);

201
202
203
template <DLDeviceType XPU, typename IdType>
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo);

204
template <DLDeviceType XPU, typename IdType>
205
206
207
208
void COOSort_(COOMatrix* mat, bool sort_column);

template <DLDeviceType XPU, typename IdType>
std::pair<bool, bool> COOIsSorted(COOMatrix coo);
209

210
211
212
template <DLDeviceType XPU, typename IdType>
COOMatrix COORemove(COOMatrix coo, IdArray entries);

213
214
215
216
217
218
219
220
221
222
223
224
225
// FloatType is the type of probability data.
template <DLDeviceType XPU, typename IdType, typename FloatType>
COOMatrix COORowWiseSampling(
    COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace);

template <DLDeviceType XPU, typename IdType>
COOMatrix COORowWiseSamplingUniform(
    COOMatrix mat, IdArray rows, int64_t num_samples, bool replace);

// FloatType is the type of weight data.
template <DLDeviceType XPU, typename IdType, typename FloatType>
COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending);
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
template <DLDeviceType XPU, typename IdType>
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source);

template <DLDeviceType XPU, typename IdType>
Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source);

template <DLDeviceType XPU, typename IdType>
Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr);

template <DLDeviceType XPU, typename IdType>
Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source);

template <DLDeviceType XPU, typename IdType>
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels);

246
247


248
249
250
251
252
}  // namespace impl
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_ARRAY_OP_H_