process_movielens1m.py 6.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
"""
Script that reads from raw MovieLens-1M data and dumps into a pickle
file the following:

* A heterogeneous graph with categorical features.
* A list with all the movie titles.  The movie titles correspond to
  the movie nodes in the heterogeneous graph.

This script exemplifies how to prepare tabular data with textual
features.  Since DGL graphs do not store variable-length features, we
instead put variable-length features into a more suitable container
(e.g. torchtext to handle list of texts)
"""

import os
import re
import argparse
import pickle
import pandas as pd
import numpy as np
import scipy.sparse as ssp
import dgl
import torch
import torchtext
from builder import PandasGraphBuilder
from data_utils import *

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('directory', type=str)
    parser.add_argument('output_path', type=str)
    args = parser.parse_args()
    directory = args.directory
    output_path = args.output_path

    ## Build heterogeneous graph

    # Load data
    users = []
    with open(os.path.join(directory, 'users.dat'), encoding='latin1') as f:
        for l in f:
            id_, gender, age, occupation, zip_ = l.strip().split('::')
            users.append({
                'user_id': int(id_),
                'gender': gender,
                'age': age,
                'occupation': occupation,
                'zip': zip_,
                })
    users = pd.DataFrame(users).astype('category')

    movies = []
    with open(os.path.join(directory, 'movies.dat'), encoding='latin1') as f:
        for l in f:
            id_, title, genres = l.strip().split('::')
            genres_set = set(genres.split('|'))

            # extract year
            assert re.match(r'.*\([0-9]{4}\)$', title)
            year = title[-5:-1]
            title = title[:-6].strip()

            data = {'movie_id': int(id_), 'title': title, 'year': year}
            for g in genres_set:
                data[g] = True
            movies.append(data)
    movies = pd.DataFrame(movies).astype({'year': 'category'})

    ratings = []
    with open(os.path.join(directory, 'ratings.dat'), encoding='latin1') as f:
        for l in f:
            user_id, movie_id, rating, timestamp = [int(_) for _ in l.split('::')]
            ratings.append({
                'user_id': user_id,
                'movie_id': movie_id,
                'rating': rating,
                'timestamp': timestamp,
                })
    ratings = pd.DataFrame(ratings)

    # Filter the users and items that never appear in the rating table.
    distinct_users_in_ratings = ratings['user_id'].unique()
    distinct_movies_in_ratings = ratings['movie_id'].unique()
    users = users[users['user_id'].isin(distinct_users_in_ratings)]
    movies = movies[movies['movie_id'].isin(distinct_movies_in_ratings)]

    # Group the movie features into genres (a vector), year (a category), title (a string)
    genre_columns = movies.columns.drop(['movie_id', 'title', 'year'])
    movies[genre_columns] = movies[genre_columns].fillna(False).astype('bool')
    movies_categorical = movies.drop('title', axis=1)

    # Build graph
    graph_builder = PandasGraphBuilder()
    graph_builder.add_entities(users, 'user_id', 'user')
    graph_builder.add_entities(movies_categorical, 'movie_id', 'movie')
    graph_builder.add_binary_relations(ratings, 'user_id', 'movie_id', 'watched')
    graph_builder.add_binary_relations(ratings, 'movie_id', 'user_id', 'watched-by')

    g = graph_builder.build()

    # Assign features.
    # Note that variable-sized features such as texts or images are handled elsewhere.
    g.nodes['user'].data['gender'] = torch.LongTensor(users['gender'].cat.codes.values)
    g.nodes['user'].data['age'] = torch.LongTensor(users['age'].cat.codes.values)
    g.nodes['user'].data['occupation'] = torch.LongTensor(users['occupation'].cat.codes.values)
    g.nodes['user'].data['zip'] = torch.LongTensor(users['zip'].cat.codes.values)

    g.nodes['movie'].data['year'] = torch.LongTensor(movies['year'].cat.codes.values)
    g.nodes['movie'].data['genre'] = torch.FloatTensor(movies[genre_columns].values)

    g.edges['watched'].data['rating'] = torch.LongTensor(ratings['rating'].values)
    g.edges['watched'].data['timestamp'] = torch.LongTensor(ratings['timestamp'].values)
    g.edges['watched-by'].data['rating'] = torch.LongTensor(ratings['rating'].values)
    g.edges['watched-by'].data['timestamp'] = torch.LongTensor(ratings['timestamp'].values)

    # Train-validation-test split
    # This is a little bit tricky as we want to select the last interaction for test, and the
    # second-to-last interaction for validation.
119
    train_indices, val_indices, test_indices = train_test_split_by_time(ratings, 'timestamp', 'user_id')
120
121
122

    # Build the graph with training interactions only.
    train_g = build_train_graph(g, train_indices, 'user', 'movie', 'watched', 'watched-by')
123
    assert train_g.out_degrees(etype='watched').min() > 0
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    # Build the user-item sparse matrix for validation and test set.
    val_matrix, test_matrix = build_val_test_matrix(g, val_indices, test_indices, 'user', 'movie', 'watched')

    ## Build title set

    movie_textual_dataset = {'title': movies['title'].values}

    # The model should build their own vocabulary and process the texts.  Here is one example
    # of using torchtext to pad and numericalize a batch of strings.
    #     field = torchtext.data.Field(include_lengths=True, lower=True, batch_first=True)
    #     examples = [torchtext.data.Example.fromlist([t], [('title', title_field)]) for t in texts]
    #     titleset = torchtext.data.Dataset(examples, [('title', title_field)])
    #     field.build_vocab(titleset.title, vectors='fasttext.simple.300d')
    #     token_ids, lengths = field.process([examples[0].title, examples[1].title])

    ## Dump the graph and the datasets

    dataset = {
        'train-graph': train_g,
        'val-matrix': val_matrix,
        'test-matrix': test_matrix,
        'item-texts': movie_textual_dataset,
        'item-images': None,
        'user-type': 'user',
        'item-type': 'movie',
        'user-to-item-type': 'watched',
        'item-to-user-type': 'watched-by',
        'timestamp-edge-column': 'timestamp'}

    with open(output_path, 'wb') as f:
        pickle.dump(dataset, f)