configure.py 3.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from functools import partial

from dgllife.utils.featurizers import CanonicalAtomFeaturizer, BaseAtomFeaturizer, \
    BaseBondFeaturizer, ConcatFeaturizer, atom_type_one_hot, atom_degree_one_hot, \
    atom_formal_charge, atom_num_radical_electrons, atom_hybridization_one_hot, \
    atom_total_num_H_one_hot

from utils import chirality

GCN_Tox21 = {
    'random_seed': 2,
    'batch_size': 128,
    'lr': 1e-3,
    'num_epochs': 100,
    'atom_data_field': 'h',
    'frac_train': 0.8,
    'frac_val': 0.1,
    'frac_test': 0.1,
    'in_feats': 74,
    'gcn_hidden_feats': [64, 64],
    'classifier_hidden_feats': 64,
    'patience': 10,
    'atom_featurizer': CanonicalAtomFeaturizer(),
    'metric_name': 'roc_auc_score'
}

GAT_Tox21 = {
    'random_seed': 2,
    'batch_size': 128,
    'lr': 1e-3,
    'num_epochs': 100,
    'atom_data_field': 'h',
    'frac_train': 0.8,
    'frac_val': 0.1,
    'frac_test': 0.1,
    'in_feats': 74,
    'gat_hidden_feats': [32, 32],
    'classifier_hidden_feats': 64,
    'num_heads': [4, 4],
    'patience': 10,
    'atom_featurizer': CanonicalAtomFeaturizer(),
    'metric_name': 'roc_auc_score'
}

MPNN_Alchemy = {
    'random_seed': 0,
    'batch_size': 16,
    'num_epochs': 250,
    'node_in_feats': 15,
    'node_out_feats': 64,
    'edge_in_feats': 5,
    'edge_hidden_feats': 128,
    'n_tasks': 12,
    'lr': 0.0001,
    'patience': 50,
    'metric_name': 'mae',
    'weight_decay': 0
}

SchNet_Alchemy = {
    'random_seed': 0,
    'batch_size': 16,
    'num_epochs': 250,
    'node_feats': 64,
    'hidden_feats': [64, 64, 64],
    'classifier_hidden_feats': 64,
    'n_tasks': 12,
    'lr': 0.0001,
    'patience': 50,
    'metric_name': 'mae',
    'weight_decay': 0
}

MGCN_Alchemy = {
    'random_seed': 0,
    'batch_size': 16,
    'num_epochs': 250,
    'feats': 128,
    'n_layers': 3,
    'classifier_hidden_feats': 64,
    'n_tasks': 12,
    'lr': 0.0001,
    'patience': 50,
    'metric_name': 'mae',
    'weight_decay': 0
}

AttentiveFP_Aromaticity = {
    'random_seed': 8,
    'graph_feat_size': 200,
    'num_layers': 2,
    'num_timesteps': 2,
    'node_feat_size': 39,
    'edge_feat_size': 10,
    'n_tasks': 1,
    'dropout': 0.2,
    'weight_decay': 10 ** (-5.0),
    'lr': 10 ** (-2.5),
    'batch_size': 128,
    'num_epochs': 800,
    'frac_train': 0.8,
    'frac_val': 0.1,
    'frac_test': 0.1,
    'patience': 80,
    'metric_name': 'rmse',
    # Follow the atom featurization in the original work
    'atom_featurizer': BaseAtomFeaturizer(
        featurizer_funcs={'hv': ConcatFeaturizer([
            partial(atom_type_one_hot, allowable_set=[
                'B', 'C', 'N', 'O', 'F', 'Si', 'P', 'S', 'Cl', 'As', 'Se', 'Br', 'Te', 'I', 'At'],
                    encode_unknown=True),
            partial(atom_degree_one_hot, allowable_set=list(range(6))),
            atom_formal_charge, atom_num_radical_electrons,
            partial(atom_hybridization_one_hot, encode_unknown=True),
            lambda atom: [0], # A placeholder for aromatic information,
            atom_total_num_H_one_hot, chirality
        ],
        )}
    ),
    'bond_featurizer': BaseBondFeaturizer({
        'he': lambda bond: [0 for _ in range(10)]
    })
}

experiment_configures = {
    'GCN_Tox21': GCN_Tox21,
    'GAT_Tox21': GAT_Tox21,
    'MPNN_Alchemy': MPNN_Alchemy,
    'SchNet_Alchemy': SchNet_Alchemy,
    'MGCN_Alchemy': MGCN_Alchemy,
    'AttentiveFP_Aromaticity': AttentiveFP_Aromaticity
}
def get_exp_configure(exp_name):
    return experiment_configures[exp_name]