cuda_to_block.cu 19.7 KB
Newer Older
1
/*!
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 *  Copyright 2020-2021 Contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
 * \file graph/transform/cuda_to_block.cu
 * \brief Functions to convert a set of edges into a graph block with local
 * ids.
 */


#include <dgl/runtime/device_api.h>
#include <dgl/immutable_graph.h>
#include <cuda_runtime.h>
#include <utility>
#include <algorithm>
#include <memory>

#include "../../../runtime/cuda/cuda_common.h"
#include "../../../runtime/cuda/cuda_hashtable.cuh"
#include "../../heterograph.h"
#include "../to_bipartite.h"

using namespace dgl::aten;
using namespace dgl::runtime::cuda;

namespace dgl {
namespace transform {

namespace {

template<typename IdType, int BLOCK_SIZE, IdType TILE_SIZE>
__device__ void map_vertex_ids(
    const IdType * const global,
    IdType * const new_global,
    const IdType num_vertices,
    const DeviceOrderedHashTable<IdType>& table) {
  assert(BLOCK_SIZE == blockDim.x);

  using Mapping = typename OrderedHashTable<IdType>::Mapping;

  const IdType tile_start = TILE_SIZE*blockIdx.x;
  const IdType tile_end = min(TILE_SIZE*(blockIdx.x+1), num_vertices);

  for (IdType idx = threadIdx.x+tile_start; idx < tile_end; idx+=BLOCK_SIZE) {
    const Mapping& mapping = *table.Search(global[idx]);
    new_global[idx] = mapping.local;
  }
}

/**
* \brief Generate mapped edge endpoint ids.
*
* \tparam IdType The type of id.
* \tparam BLOCK_SIZE The size of each thread block.
* \tparam TILE_SIZE The number of edges to process per thread block.
* \param global_srcs_device The source ids to map.
* \param new_global_srcs_device The mapped source ids (output).
* \param global_dsts_device The destination ids to map.
* \param new_global_dsts_device The mapped destination ids (output).
* \param num_edges The number of edges to map.
* \param src_mapping The mapping of sources ids.
* \param src_hash_size The the size of source id hash table/mapping.
* \param dst_mapping The mapping of destination ids.
* \param dst_hash_size The the size of destination id hash table/mapping.
*/
template<typename IdType, int BLOCK_SIZE, IdType TILE_SIZE>
__global__ void map_edge_ids(
    const IdType * const global_srcs_device,
    IdType * const new_global_srcs_device,
    const IdType * const global_dsts_device,
    IdType * const new_global_dsts_device,
    const IdType num_edges,
    DeviceOrderedHashTable<IdType> src_mapping,
    DeviceOrderedHashTable<IdType> dst_mapping) {
  assert(BLOCK_SIZE == blockDim.x);
  assert(2 == gridDim.y);

  if (blockIdx.y == 0) {
    map_vertex_ids<IdType, BLOCK_SIZE, TILE_SIZE>(
        global_srcs_device,
        new_global_srcs_device,
        num_edges,
        src_mapping);
  } else {
    map_vertex_ids<IdType, BLOCK_SIZE, TILE_SIZE>(
        global_dsts_device,
        new_global_dsts_device,
        num_edges,
        dst_mapping);
  }
}

template<typename IdType>
inline size_t RoundUpDiv(
    const IdType num,
    const size_t divisor) {
  return static_cast<IdType>(num/divisor) + (num % divisor == 0 ? 0 : 1);
}


template<typename IdType>
inline IdType RoundUp(
    const IdType num,
    const size_t unit) {
  return RoundUpDiv(num, unit)*unit;
}


template<typename IdType>
class DeviceNodeMap {
 public:
  using Mapping = typename OrderedHashTable<IdType>::Mapping;

  DeviceNodeMap(
      const std::vector<int64_t>& num_nodes,
      DGLContext ctx,
      cudaStream_t stream) :
    num_types_(num_nodes.size()),
    rhs_offset_(num_types_/2),
    workspaces_(),
    hash_tables_(),
    ctx_(ctx) {
    auto device = runtime::DeviceAPI::Get(ctx);

    hash_tables_.reserve(num_types_);
    workspaces_.reserve(num_types_);
    for (int64_t i = 0; i < num_types_; ++i) {
      hash_tables_.emplace_back(
          new OrderedHashTable<IdType>(
            num_nodes[i],
            ctx_,
            stream));
    }
  }

  OrderedHashTable<IdType>& LhsHashTable(
      const size_t index) {
    return HashData(index);
  }

  OrderedHashTable<IdType>& RhsHashTable(
      const size_t index) {
    return HashData(index+rhs_offset_);
  }

  const OrderedHashTable<IdType>& LhsHashTable(
      const size_t index) const {
    return HashData(index);
  }

  const OrderedHashTable<IdType>& RhsHashTable(
      const size_t index) const {
    return HashData(index+rhs_offset_);
  }

  IdType LhsHashSize(
      const size_t index) const {
    return HashSize(index);
  }

  IdType RhsHashSize(
      const size_t index) const {
    return HashSize(rhs_offset_+index);
  }

  size_t Size() const {
    return hash_tables_.size();
  }

 private:
  int64_t num_types_;
  size_t rhs_offset_;
  std::vector<void*> workspaces_;
  std::vector<std::unique_ptr<OrderedHashTable<IdType>>> hash_tables_;
  DGLContext ctx_;

  inline OrderedHashTable<IdType>& HashData(
      const size_t index) {
    CHECK_LT(index, hash_tables_.size());
    return *hash_tables_[index];
  }

  inline const OrderedHashTable<IdType>& HashData(
      const size_t index) const {
    CHECK_LT(index, hash_tables_.size());
    return *hash_tables_[index];
  }

  inline IdType HashSize(
      const size_t index) const {
    return HashData(index).size();
  }
};

template<typename IdType>
class DeviceNodeMapMaker {
 public:
  DeviceNodeMapMaker(
      const std::vector<int64_t>& maxNodesPerType) :
      max_num_nodes_(0) {
    max_num_nodes_ = *std::max_element(maxNodesPerType.begin(),
        maxNodesPerType.end());
  }

  /**
  * \brief This function builds node maps for each node type, preserving the
218
219
  * order of the input nodes. Here it is assumed the lhs_nodes are not unique,
  * and thus a unique list is generated.
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param count_lhs_device The number of unique source nodes (on the GPU).
  * \param lhs_device The unique source nodes (on the GPU).
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      int64_t * const count_lhs_device,
      std::vector<IdArray>* const lhs_device,
      cudaStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    CUDA_CALL(cudaMemsetAsync(
      count_lhs_device,
      0,
      num_ntypes*sizeof(*count_lhs_device),
      stream));

    // possibly dublicate lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        CHECK_EQ(nodes->ctx.device_type, kDLGPU);
        node_maps->LhsHashTable(ntype).FillWithDuplicates(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            (*lhs_device)[ntype].Ptr<IdType>(),
            count_lhs_device+ntype,
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
  /**
  * \brief This function builds node maps for each node type, preserving the
  * order of the input nodes. Here it is assumed both lhs_nodes and rhs_nodes
  * are unique.
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      cudaStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    // unique lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        CHECK_EQ(nodes->ctx.device_type, kDLGPU);
        node_maps->LhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
 private:
  IdType max_num_nodes_;
};

template<typename IdType>
std::tuple<std::vector<IdArray>, std::vector<IdArray>>
MapEdges(
    HeteroGraphPtr graph,
    const std::vector<EdgeArray>& edge_sets,
    const DeviceNodeMap<IdType>& node_map,
    cudaStream_t stream) {
  constexpr const int BLOCK_SIZE = 128;
  constexpr const size_t TILE_SIZE = 1024;

  const auto& ctx = graph->Context();

  std::vector<IdArray> new_lhs;
  new_lhs.reserve(edge_sets.size());
  std::vector<IdArray> new_rhs;
  new_rhs.reserve(edge_sets.size());

  // The next peformance optimization here, is to perform mapping of all edge
  // types in a single kernel launch.
  const int64_t num_edge_sets = static_cast<int64_t>(edge_sets.size());
  for (int64_t etype = 0; etype < num_edge_sets; ++etype) {
    const EdgeArray& edges = edge_sets[etype];
340
    if (edges.id.defined() && edges.src->shape[0] > 0) {
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      const int64_t num_edges = edges.src->shape[0];

      new_lhs.emplace_back(NewIdArray(num_edges, ctx, sizeof(IdType)*8));
      new_rhs.emplace_back(NewIdArray(num_edges, ctx, sizeof(IdType)*8));

      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const int src_type = src_dst_types.first;
      const int dst_type = src_dst_types.second;

      const dim3 grid(RoundUpDiv(num_edges, TILE_SIZE), 2);
      const dim3 block(BLOCK_SIZE);

      // map the srcs
      map_edge_ids<IdType, BLOCK_SIZE, TILE_SIZE><<<
        grid,
        block,
        0,
        stream>>>(
        edges.src.Ptr<IdType>(),
        new_lhs.back().Ptr<IdType>(),
        edges.dst.Ptr<IdType>(),
        new_rhs.back().Ptr<IdType>(),
        num_edges,
        node_map.LhsHashTable(src_type).DeviceHandle(),
        node_map.RhsHashTable(dst_type).DeviceHandle());
      CUDA_CALL(cudaGetLastError());
    } else {
368
369
370
371
      new_lhs.emplace_back(
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx));
      new_rhs.emplace_back(
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx));
372
373
374
375
376
377
378
379
380
381
382
    }
  }

  return std::tuple<std::vector<IdArray>, std::vector<IdArray>>(
      std::move(new_lhs), std::move(new_rhs));
}


// Since partial specialization is not allowed for functions, use this as an
// intermediate for ToBlock where XPU = kDLGPU.
template<typename IdType>
383
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
384
385
386
ToBlockGPU(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
387
388
389
390
391
    const bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes_ptr) {
  std::vector<IdArray>& lhs_nodes = *lhs_nodes_ptr;
  const bool generate_lhs_nodes = lhs_nodes.empty();

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
  cudaStream_t stream = 0;
  const auto& ctx = graph->Context();
  auto device = runtime::DeviceAPI::Get(ctx);

  CHECK_EQ(ctx.device_type, kDLGPU);
  for (const auto& nodes : rhs_nodes) {
    CHECK_EQ(ctx.device_type, nodes->ctx.device_type);
  }

  // Since DST nodes are included in SRC nodes, a common requirement is to fetch
  // the DST node features from the SRC nodes features. To avoid expensive sparse lookup,
  // the function assures that the DST nodes in both SRC and DST sets have the same ids.
  // As a result, given the node feature tensor ``X`` of type ``utype``,
  // the following code finds the corresponding DST node features of type ``vtype``:

  const int64_t num_etypes = graph->NumEdgeTypes();
  const int64_t num_ntypes = graph->NumVertexTypes();

  CHECK(rhs_nodes.size() == static_cast<size_t>(num_ntypes))
    << "rhs_nodes not given for every node type";

  std::vector<EdgeArray> edge_arrays(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t dsttype = src_dst_types.second;
    if (!aten::IsNullArray(rhs_nodes[dsttype])) {
      edge_arrays[etype] = graph->Edges(etype);
    }
  }

  // count lhs and rhs nodes
  std::vector<int64_t> maxNodesPerType(num_ntypes*2, 0);
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
    maxNodesPerType[ntype+num_ntypes] += rhs_nodes[ntype]->shape[0];

427
428
429
430
431
432
    if (generate_lhs_nodes) {
      if (include_rhs_in_lhs) {
        maxNodesPerType[ntype] += rhs_nodes[ntype]->shape[0];
      }
    } else {
      maxNodesPerType[ntype] += lhs_nodes[ntype]->shape[0];
433
434
    }
  }
435
436
437
438
439
440
441
442
443
  if (generate_lhs_nodes) {
    // we don't have lhs_nodes, see we need to count inbound edges to get an
    // upper bound
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        maxNodesPerType[srctype] += edge_arrays[etype].src->shape[0];
      }
444
445
446
447
448
    }
  }

  // gather lhs_nodes
  std::vector<IdArray> src_nodes(num_ntypes);
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
  if (generate_lhs_nodes) {
    std::vector<int64_t> src_node_offsets(num_ntypes, 0);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = NewIdArray(maxNodesPerType[ntype], ctx,
          sizeof(IdType)*8);
      if (include_rhs_in_lhs) {
        // place rhs nodes first
        device->CopyDataFromTo(rhs_nodes[ntype].Ptr<IdType>(), 0,
            src_nodes[ntype].Ptr<IdType>(), src_node_offsets[ntype],
            sizeof(IdType)*rhs_nodes[ntype]->shape[0],
            rhs_nodes[ntype]->ctx, src_nodes[ntype]->ctx,
            rhs_nodes[ntype]->dtype,
            stream);
        src_node_offsets[ntype] += sizeof(IdType)*rhs_nodes[ntype]->shape[0];
      }
464
    }
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        device->CopyDataFromTo(
            edge_arrays[etype].src.Ptr<IdType>(), 0,
            src_nodes[srctype].Ptr<IdType>(),
            src_node_offsets[srctype],
            sizeof(IdType)*edge_arrays[etype].src->shape[0],
            rhs_nodes[srctype]->ctx,
            src_nodes[srctype]->ctx,
            rhs_nodes[srctype]->dtype,
            stream);

        src_node_offsets[srctype] += sizeof(IdType)*edge_arrays[etype].src->shape[0];
      }
    }
  } else {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = lhs_nodes[ntype];
485
486
487
488
489
490
491
    }
  }

  // allocate space for map creation process
  DeviceNodeMapMaker<IdType> maker(maxNodesPerType);
  DeviceNodeMap<IdType> node_maps(maxNodesPerType, ctx, stream);

492
493
494
495
496
497
  if (generate_lhs_nodes) {
    lhs_nodes.reserve(num_ntypes);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes.emplace_back(NewIdArray(
          maxNodesPerType[ntype], ctx, sizeof(IdType)*8));
    }
498
499
  }

500
501
  std::vector<int64_t> num_nodes_per_type(num_ntypes*2);
  // populate RHS nodes from what we already know
502
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
503
    num_nodes_per_type[num_ntypes+ntype] = rhs_nodes[ntype]->shape[0];
504
505
506
  }

  // populate the mappings
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
  if (generate_lhs_nodes) {
    int64_t * count_lhs_device = static_cast<int64_t*>(
        device->AllocWorkspace(ctx, sizeof(int64_t)*num_ntypes*2));

    maker.Make(
        src_nodes,
        rhs_nodes,
        &node_maps,
        count_lhs_device,
        &lhs_nodes,
        stream);

    device->CopyDataFromTo(
        count_lhs_device, 0,
        num_nodes_per_type.data(), 0,
        sizeof(*num_nodes_per_type.data())*num_ntypes,
        ctx,
        DGLContext{kDLCPU, 0},
        DGLType{kDLInt, 64, 1},
        stream);
    device->StreamSync(ctx, stream);

    // wait for the node counts to finish transferring
    device->FreeWorkspace(ctx, count_lhs_device);
  } else {
    maker.Make(
        lhs_nodes,
        rhs_nodes,
        &node_maps,
        stream);

    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      num_nodes_per_type[ntype] = lhs_nodes[ntype]->shape[0];
    }
  }
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

  std::vector<IdArray> induced_edges;
  induced_edges.reserve(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    if (edge_arrays[etype].id.defined()) {
      induced_edges.push_back(edge_arrays[etype].id);
    } else {
      induced_edges.push_back(
            aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx));
    }
  }

  // build metagraph -- small enough to be done on CPU
  const auto meta_graph = graph->meta_graph();
  const EdgeArray etypes = meta_graph->Edges("eid");
  const IdArray new_dst = Add(etypes.dst, num_ntypes);
  const auto new_meta_graph = ImmutableGraph::CreateFromCOO(
      num_ntypes * 2, etypes.src, new_dst);

  // allocate vector for graph relations while GPU is busy
  std::vector<HeteroGraphPtr> rel_graphs;
  rel_graphs.reserve(num_etypes);

  // map node numberings from global to local, and build pointer for CSR
  std::vector<IdArray> new_lhs;
  std::vector<IdArray> new_rhs;
  std::tie(new_lhs, new_rhs) = MapEdges(graph, edge_arrays, node_maps, stream);

  // resize lhs nodes
571
572
573
574
  if (generate_lhs_nodes) {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes[ntype]->shape[0] = num_nodes_per_type[ntype];
    }
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
  }

  // build the heterograph
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t srctype = src_dst_types.first;
    const dgl_type_t dsttype = src_dst_types.second;

    if (rhs_nodes[dsttype]->shape[0] == 0) {
      // No rhs nodes are given for this edge type. Create an empty graph.
      rel_graphs.push_back(CreateFromCOO(
          2, lhs_nodes[srctype]->shape[0], rhs_nodes[dsttype]->shape[0],
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx),
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx)));
    } else {
      rel_graphs.push_back(CreateFromCOO(
          2,
          lhs_nodes[srctype]->shape[0],
          rhs_nodes[dsttype]->shape[0],
          new_lhs[etype],
          new_rhs[etype]));
    }
  }

  HeteroGraphPtr new_graph = CreateHeteroGraph(
      new_meta_graph, rel_graphs, num_nodes_per_type);

  // return the new graph, the new src nodes, and new edges
603
  return std::make_tuple(new_graph, induced_edges);
604
605
606
607
608
}

}  // namespace

template<>
609
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
610
611
612
ToBlock<kDLGPU, int32_t>(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
613
614
615
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int32_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
616
617
618
}

template<>
619
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
620
621
622
ToBlock<kDLGPU, int64_t>(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
623
624
625
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int64_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
626
627
628
629
}

}  // namespace transform
}  // namespace dgl