eval_function.py 5.65 KB
Newer Older
1
import numpy as np
2
import torch
3
4
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
5
6
7
from sklearn.model_selection import (GridSearchCV, ShuffleSplit,
                                     train_test_split)
from sklearn.multiclass import OneVsRestClassifier
8
9
10
11
12
from sklearn.preprocessing import OneHotEncoder, normalize


def fit_logistic_regression(X, y, data_random_seed=1, repeat=1):
    # transform targets to one-hot vector
13
    one_hot_encoder = OneHotEncoder(categories="auto", sparse=False)
14
15
16
17

    y = one_hot_encoder.fit_transform(y.reshape(-1, 1)).astype(np.bool)

    # normalize x
18
    X = normalize(X, norm="l2")
19
20
21
22
23
24
25

    # set random state, this will ensure the dataset will be split exactly the same throughout training
    rng = np.random.RandomState(data_random_seed)

    accuracies = []
    for _ in range(repeat):
        # different random split after each repeat
26
27
28
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.8, random_state=rng
        )
29
30

        # grid search with one-vs-rest classifiers
31
        logreg = LogisticRegression(solver="liblinear")
32
33
        c = 2.0 ** np.arange(-10, 11)
        cv = ShuffleSplit(n_splits=5, test_size=0.5)
34
35
36
37
38
39
40
        clf = GridSearchCV(
            estimator=OneVsRestClassifier(logreg),
            param_grid=dict(estimator__C=c),
            n_jobs=5,
            cv=cv,
            verbose=0,
        )
41
42
43
44
        clf.fit(X_train, y_train)

        y_pred = clf.predict_proba(X_test)
        y_pred = np.argmax(y_pred, axis=1)
45
46
47
        y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(
            np.bool
        )
48
49
50
51
52
53

        test_acc = metrics.accuracy_score(y_test, y_pred)
        accuracies.append(test_acc)
    return accuracies


54
55
56
def fit_logistic_regression_preset_splits(
    X, y, train_mask, val_mask, test_mask
):
57
    # transform targets to one-hot vector
58
    one_hot_encoder = OneHotEncoder(categories="auto", sparse=False)
59
60
61
    y = one_hot_encoder.fit_transform(y.reshape(-1, 1)).astype(np.bool)

    # normalize x
62
    X = normalize(X, norm="l2")
63
64
65
66

    accuracies = []
    for split_id in range(train_mask.shape[1]):
        # get train/val/test masks
67
68
69
70
        tmp_train_mask, tmp_val_mask = (
            train_mask[:, split_id],
            val_mask[:, split_id],
        )
71
72
73
74
75
76
77
78
79

        # make custom cv
        X_train, y_train = X[tmp_train_mask], y[tmp_train_mask]
        X_val, y_val = X[tmp_val_mask], y[tmp_val_mask]
        X_test, y_test = X[test_mask], y[test_mask]

        # grid search with one-vs-rest classifiers
        best_test_acc, best_acc = 0, 0
        for c in 2.0 ** np.arange(-10, 11):
80
81
82
            clf = OneVsRestClassifier(
                LogisticRegression(solver="liblinear", C=c)
            )
83
84
85
86
            clf.fit(X_train, y_train)

            y_pred = clf.predict_proba(X_val)
            y_pred = np.argmax(y_pred, axis=1)
87
88
89
            y_pred = one_hot_encoder.transform(y_pred.reshape(-1, 1)).astype(
                np.bool
            )
90
91
92
93
94
            val_acc = metrics.accuracy_score(y_val, y_pred)
            if val_acc > best_acc:
                best_acc = val_acc
                y_pred = clf.predict_proba(X_test)
                y_pred = np.argmax(y_pred, axis=1)
95
96
97
                y_pred = one_hot_encoder.transform(
                    y_pred.reshape(-1, 1)
                ).astype(np.bool)
98
99
100
101
102
103
                best_test_acc = metrics.accuracy_score(y_test, y_pred)

        accuracies.append(best_test_acc)
    return accuracies


104
105
106
def fit_ppi_linear(
    num_classes, train_data, val_data, test_data, device, repeat=1
):
107
    r"""
108
109
110
    Trains a linear layer on top of the representations. This function is specific to the PPI dataset,
    which has multiple labels.
    """
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def train(classifier, train_data, optimizer):
        classifier.train()

        x, label = train_data
        x, label = x.to(device), label.to(device)
        for step in range(100):
            # forward
            optimizer.zero_grad()
            pred_logits = classifier(x)

            # loss and backprop
            loss = criterion(pred_logits, label)
            loss.backward()
            optimizer.step()

    def test(classifier, data):
        classifier.eval()
        x, label = data
        label = label.cpu().numpy().squeeze()

        # feed to network and classifier
        with torch.no_grad():
            pred_logits = classifier(x.to(device))
            pred_class = (pred_logits > 0).float().cpu().numpy()

137
138
139
140
141
        return (
            metrics.f1_score(label, pred_class, average="micro")
            if pred_class.sum() > 0
            else 0
        )
142
143
144
145
146

    num_feats = train_data[0].size(1)
    criterion = torch.nn.BCEWithLogitsLoss()

    # normalization
147
148
149
    mean, std = train_data[0].mean(0, keepdim=True), train_data[0].std(
        0, unbiased=False, keepdim=True
    )
150
151
152
153
154
155
156
157
158
159
160
    train_data[0] = (train_data[0] - mean) / std
    val_data[0] = (val_data[0] - mean) / std
    test_data[0] = (test_data[0] - mean) / std

    best_val_f1 = []
    test_f1 = []
    for _ in range(repeat):
        tmp_best_val_f1 = 0
        tmp_test_f1 = 0
        for weight_decay in 2.0 ** np.arange(-10, 11, 2):
            classifier = torch.nn.Linear(num_feats, num_classes).to(device)
161
162
163
164
165
            optimizer = torch.optim.AdamW(
                params=classifier.parameters(),
                lr=0.01,
                weight_decay=weight_decay,
            )
166
167
168
169
170
171
172
173
174
175

            train(classifier, train_data, optimizer)
            val_f1 = test(classifier, val_data)
            if val_f1 > tmp_best_val_f1:
                tmp_best_val_f1 = val_f1
                tmp_test_f1 = test(classifier, test_data)
        best_val_f1.append(tmp_best_val_f1)
        test_f1.append(tmp_test_f1)

    return [best_val_f1], [test_f1]