gcn.py 3.15 KB
Newer Older
paoxiaode's avatar
paoxiaode committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
"""
[Semi-Supervised Classification with Graph Convolutional Networks]
(https://arxiv.org/abs/1609.02907)
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from dgl.mock_sparse import create_from_coo, diag, identity
from torch.optim import Adam


class GCN(nn.Module):
    def __init__(self, in_size, out_size, hidden_size=16):
        super().__init__()

        # Two-layer GCN.
        self.Theta1 = nn.Linear(in_size, hidden_size)
        self.Theta2 = nn.Linear(hidden_size, out_size)

    ############################################################################
23
24
    # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the GCN
    # forward process.
paoxiaode's avatar
paoxiaode committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    ############################################################################
    def forward(self, A_norm, X):
        X = A_norm @ self.Theta1(X)
        X = F.relu(X)
        X = A_norm @ self.Theta2(X)
        return X


def evaluate(g, pred):
    label = g.ndata["label"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


def train(model, g, A_norm, X):
    label = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    optimizer = Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)
    loss_fcn = nn.CrossEntropyLoss()

    for epoch in range(200):
        model.train()

        # Forward.
        logits = model(A_norm, X)

        # Compute loss with nodes in the training set.
        loss = loss_fcn(logits[train_mask], label[train_mask])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        pred = logits.argmax(dim=1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(g, pred)
        if epoch % 20 == 0:
            print(
                f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}"
                f", test acc: {test_acc:.3f}"
            )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)
    num_classes = dataset.num_classes
    X = g.ndata["feat"]

    # Create the adjacency matrix of graph.
    src, dst = g.edges()
    N = g.num_nodes()
    A = create_from_coo(dst, src, shape=(N, N))

    ############################################################################
93
94
    # (HIGHLIGHT) Compute the symmetrically normalized adjacency matrix with
    # Sparse Matrix API
paoxiaode's avatar
paoxiaode committed
95
96
97
98
99
100
101
102
103
104
105
106
107
    ############################################################################
    I = identity(A.shape, device=dev)
    A_hat = A + I
    D_hat = diag(A_hat.sum(1)) ** -0.5
    A_norm = D_hat @ A_hat @ D_hat

    # Create model.
    in_size = X.shape[1]
    out_size = num_classes
    model = GCN(in_size, out_size).to(dev)

    # Kick off training.
    train(model, g, A_norm, X)