explain_main.py 2.18 KB
Newer Older
KounianhuaDu's avatar
KounianhuaDu committed
1
2
import argparse
import os
3

KounianhuaDu's avatar
KounianhuaDu committed
4
import torch as th
5
6
from gnnlens import Writer
from models import Model
KounianhuaDu's avatar
KounianhuaDu committed
7

8
import dgl
KounianhuaDu's avatar
KounianhuaDu committed
9
from dgl import load_graphs
10
11
from dgl.data import (BACommunityDataset, BAShapeDataset, TreeCycleDataset,
                      TreeGridDataset)
12
from dgl.nn import GNNExplainer
KounianhuaDu's avatar
KounianhuaDu committed
13
14
15


def main(args):
16
    if args.dataset == "BAShape":
17
        dataset = BAShapeDataset(seed=0)
18
    elif args.dataset == "BACommunity":
19
        dataset = BACommunityDataset(seed=0)
20
    elif args.dataset == "TreeCycle":
21
        dataset = TreeCycleDataset(seed=0)
22
    elif args.dataset == "TreeGrid":
23
24
25
        dataset = TreeGridDataset(seed=0)

    graph = dataset[0]
26
27
    labels = graph.ndata["label"]
    feats = graph.ndata["feat"]
28
29
30
    num_classes = dataset.num_classes

    # load an existing model
31
    model_path = os.path.join("./", f"model_{args.dataset}.pth")
32
33
34
35
36
37
38
39
40
41
42
    model_stat_dict = th.load(model_path)
    model = Model(feats.shape[-1], num_classes)
    model.load_state_dict(model_stat_dict)

    # Choose the first node of the class 1 for explaining prediction
    target_class = 1
    for n_idx, n_label in enumerate(labels):
        if n_label == target_class:
            break

    explainer = GNNExplainer(model, num_hops=3)
43
44
45
    new_center, sub_graph, feat_mask, edge_mask = explainer.explain_node(
        n_idx, graph, feats
    )
46
47
48

    # gnnlens2
    # Specify the path to create a new directory for dumping data files.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    writer = Writer("gnn_subgraph")
    writer.add_graph(
        name=args.dataset,
        graph=graph,
        nlabels=labels,
        num_nlabel_types=num_classes,
    )
    writer.add_subgraph(
        graph_name=args.dataset,
        subgraph_name="GNNExplainer",
        node_id=n_idx,
        subgraph_nids=sub_graph.ndata[dgl.NID],
        subgraph_eids=sub_graph.edata[dgl.EID],
        subgraph_eweights=edge_mask,
    )
64

65
    # Finish dumping.
66
    writer.close()
KounianhuaDu's avatar
KounianhuaDu committed
67

68
69
70
71
72
73
74
75
76

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Demo of GNN explainer in DGL")
    parser.add_argument(
        "--dataset",
        type=str,
        default="BAShape",
        choices=["BAShape", "BACommunity", "TreeCycle", "TreeGrid"],
    )
KounianhuaDu's avatar
KounianhuaDu committed
77
78
79
80
    args = parser.parse_args()
    print(args)

    main(args)