8_sse_mx.py 21.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
"""
.. _model-sse:

Stochastic Steady-state Embedding (SSE)
=======================================

**Author**: Gai Yu, Da Zheng, Quan Gan, Jinjing Zhou, Zheng Zhang
"""
################################################################################################
#
# .. math::
#
#    \newcommand{\bfy}{\textbf{y}}
#    \newcommand{\cale}{{\mathcal{E}}}
#    \newcommand{\calg}{{\mathcal{G}}}
#    \newcommand{\call}{{\mathcal{L}}}
#    \newcommand{\caln}{{\mathcal{N}}}
#    \newcommand{\calo}{{\mathcal{O}}}
#    \newcommand{\calt}{{\mathcal{T}}}
#    \newcommand{\calv}{{\mathcal{V}}}
#    \newcommand{\until}{\text{until}\ }
#
# In this tutorial we implement in DGL with MXNet
#
# -  Simple steady-state algorithms with `stochastic steady-state
#    embedding <https://www.cc.gatech.edu/~hdai8/pdf/equilibrium_embedding.pdf>`__
#    (SSE), and
# -  Training with subgraph sampling.
#
# Subgraph sampling is a generic technique to scale up learning to
# gigantic graphs (e.g. with billions of nodes and edges). It can apply to
# other algorithms, such as :doc:`Graph convolution
# network <1_gcn>`
# and :doc:`Relational graph convolution
# network <4_rgcn>`.
#
# Steady-state algorithms
# -----------------------
#
# Many algorithms for graph analytics are iterative procedures that
# terminate when some steady states are reached. Examples include
# PageRank, and mean-field inference on Markov Random Fields.
#
# Flood-fill algorithm
# ~~~~~~~~~~~~~~~~~~~~
#
# *Flood-fill algorithm* (or *infection* algorithm as in Dai et al.) can
# also be seen as such a procedure. Specifically, the problem is that
# given a graph :math:`\calg = (\calv, \cale)` and a source node
# :math:`s \in \calv`, we need to mark all nodes that can be reached from
# :math:`s`. Let :math:`\calv = \{1, ..., n\}` and let :math:`y_v`
# indicate whether a node :math:`v` is marked. The flood-fill algorithm
# proceeds as follows:
#
# .. math::
#
#
#    \begin{alignat}{2}
#    & y_s^{(0)} \leftarrow 1 \tag{0} \\
#    & y_v^{(0)} \leftarrow 0 \qquad && v \ne s \tag{1} \\
#    & y_v^{(t + 1)} \leftarrow \max_{u \in \caln (v)} y_u^{(t)} \qquad && \until \forall v \in \calv, y_v^{(t + 1)} = y_v^{(t)} \tag{2}
#    \end{alignat}
#
#
# where :math:`\caln (v)` denotes the neighborhood of :math:`v`, including
# :math:`v` itself.
#
# The flood-fill algorithm first marks the source node :math:`s`, and then
# repeatedly marks nodes with one or more marked neighbors until no node
# needs to be marked, i.e. the steady state is reached.
#
# Flood-fill algorithm and steady-state operator
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# More abstractly, :math:`\begin{align}
# & y_v^{(0)} \leftarrow \text{constant} \\
# & \bfy^{(t + 1)} \leftarrow \calt (\bfy^{(t)}) \qquad \until \bfy^{(t + 1)} = \bfy^{(t)} \tag{3}
# \end{align}` where :math:`\bfy^{(t)} = (y_1^{(t)}, ..., y_n^{(t)})` and
# :math:`[\calt (\bfy^{(t)})]_v = \hat\calt (\{\bfy_u^{(t)} : u \in \caln (v)\})`.
# In the case of the flood-fill algorithm, :math:`\hat\calt = \max`. The
# condition “:math:`\until \bfy^{(t + 1)} = \bfy^{(t)}`” in :math:`(3)`
# implies that :math:`\bfy^*` is the solution to the problem if and only
# if :math:`\bfy^* = \calt (\bfy^*)`, i.e. \ :math:`\bfy^*` is steady
# under :math:`\calt`. Thus we call :math:`\calt` the *steady-state
# operator*.
#
# Implementation
# ~~~~~~~~~~~~~~
#
# We can easily implement flood-fill in DGL:

import mxnet as mx
import os
import dgl

def T(g):
    def message_func(edges):
        return {'m': edges.src['y']}
    def reduce_func(nodes):
        # First compute the maximum of all neighbors...
        m = mx.nd.max(nodes.mailbox['m'], axis=1)
        # Then compare the maximum with the node itself.
        # One can also add a self-loop to each node to avoid this
        # additional max computation.
        m = mx.nd.maximum(m, nodes.data['y'])
        return {'y': m.reshape(m.shape[0], 1)}
    g.update_all(message_func, reduce_func)
    return g.ndata['y']

##############################################################################
# To run the algorithm, let’s create a ``DGLGraph`` consisting of two
# disjoint chains, each with 10 nodes, and initialize it as specified in
# Eq. :math:`(0)` and Eq. :math:`(1)`.
#
import networkx as nx

def disjoint_chains(n_chains, length):
    path_graph = nx.path_graph(n_chains * length).to_directed()
    for i in range(n_chains - 1):  # break the path graph into N chains
        path_graph.remove_edge((i + 1) * length - 1, (i + 1) * length)
        path_graph.remove_edge((i + 1) * length, (i + 1) * length - 1)
    for n in path_graph.nodes:
        path_graph.add_edge(n, n)  # add self connections
    return path_graph

N = 2    # the number of chains
L = 500 # the length of a chain
s = 0    # the source node
# The sampler (see the subgraph sampling section) only supports
# readonly graphs.
g = dgl.DGLGraph(disjoint_chains(N, L), readonly=True)
y = mx.nd.zeros([g.number_of_nodes(), 1])
y[s] = 1
g.ndata['y'] = y

##############################################################################
# Now let’s apply ``T`` to ``g`` until convergence. You can see that nodes
# reachable from ``s`` are gradually “infected” (marked).
#
while True:
    prev_y = g.ndata['y']
    next_y = T(g)
    if all(prev_y == next_y):
        break

##############################################################################
# The update procedure is visualized as follows:
#
# |image0|
#
# Steady-state embedding
# ----------------------
#
# Neural flood-fill algorithm
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Now let’s consider designing a neural network that simulates the
# flood-fill algorithm.
#
# -  Instead of using :math:`\calt` to update the states of nodes, we use
#    :math:`\calt_\Theta`, a graph neural network (and
#    :math:`\hat\calt_\Theta` instead of :math:`\hat\calt`).
# -  The state of a node :math:`v` is no longer a boolean value
#    (:math:`y_v`), but, an embedding :math:`h_v` (a vector of some
#    reasonable dimension, say, :math:`H`).
# -  We also associate a feature vector :math:`x_v` with :math:`v`. For
#    the flood-fill algorithm, we simply use the one-hot encoding of a
#    node’s ID as its feature vector, so that our algorithm can
#    distinguish different nodes.
# -  We only iterate :math:`T` times instead of iterating until the
#    steady-state condition is satisfied.
# -  After iteration, we mark the nodes by passing the node embedding
#    :math:`h_v` into another neural network to produce a probability
#    :math:`p_v` of whether the node is reachable.
#
# Mathematically, :math:`\begin{align}
# & h_v^{(0)} \leftarrow \text{random embedding} \\
# & h_v^{(t + 1)} \leftarrow \calt_\Theta (h_1^{(t)}, ..., h_n^{(t)}) \qquad 1 \leq t \leq T \tag{4}
# \end{align}` where
# :math:`[\calt_\Theta (h_1^{(t)}, ..., h_n^{(t)})]_v = \hat\calt_\Theta (x_u, h_u^{(t)} : u \in \caln (v)\})`.
# :math:`\hat\calt_\Theta` is a two layer neural network, as follows:
#
# .. math::
#
#
#    \hat\calt_\Theta (\{x_u, h_u^{(t)} : u \in \caln (v)\})
#    = W_1 \sigma \left(W_2 \left[x_v, \sum_{u \in \caln (v)} \left[h_v, x_v\right]\right]\right)
#
# where :math:`[\cdot, \cdot]` denotes the concatenation of vectors, and
# :math:`\sigma` is a nonlinearity, e.g. ReLU. Essentially, for every
# node, :math:`\calt_\Theta` repeatedly gathers its neighbors’ feature
# vectors and embeddings, sums them up, and feeds the result along with
# the node’s own feature vector to a two layer neural network.
#
# Implementation of neural flood-fill
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Like the naive algorithm, the neural flood-fill algorithm can be
# partitioned into a ``message_func`` (neighborhood information gathering)
# and a ``reduce_func`` (:math:`\hat\calt_\Theta`). We define
# :math:`\hat\calt_\Theta` as a callable ``gluon.Block``:
#
import mxnet.gluon as gluon

class SteadyStateOperator(gluon.Block):
    def __init__(self, n_hidden, activation, **kwargs):
        super(SteadyStateOperator, self).__init__(**kwargs)
        with self.name_scope():
            self.dense1 = gluon.nn.Dense(n_hidden, activation=activation)
            self.dense2 = gluon.nn.Dense(n_hidden)
 
    def forward(self, g):
        def message_func(edges):
            x = edges.src['x']
            h = edges.src['h']
            return {'m' : mx.nd.concat(x, h, dim=1)}
 
        def reduce_func(nodes):
            m = mx.nd.sum(nodes.mailbox['m'], axis=1)
            z = mx.nd.concat(nodes.data['x'], m, dim=1)
            return {'h' : self.dense2(self.dense1(z))}
 
        g.update_all(message_func, reduce_func)
        return g.ndata['h']

##############################################################################
# In practice, Eq. :math:`(4)` may cause numerical instability. One
# solution is to update :math:`h_v` with a moving average, as follows:
#
# .. math::
#
#
#    h_v^{(t + 1)} \leftarrow (1 - \alpha) h_v^{(t)} + \alpha \left[\calt_\Theta (h_0^{(t)}, ..., h_n^{(t)})\right]_v \qquad 0 < \alpha < 1
#
# Putting these together we have:
#

def update_embeddings(g, steady_state_operator):
    prev_h = g.ndata['h']
    next_h = steady_state_operator(g)
    g.ndata['h'] = (1 - alpha) * prev_h + alpha * next_h
##############################################################################
# The last step involves implementing the predictor:
#
class Predictor(gluon.Block):
    def __init__(self, n_hidden, activation, **kwargs):
        super(Predictor, self).__init__(**kwargs)
        with self.name_scope():
            self.dense1 = gluon.nn.Dense(n_hidden, activation=activation)
            self.dense2 = gluon.nn.Dense(2)  ## binary classifier
 
    def forward(self, g):
        g.ndata['z'] = self.dense2(self.dense1(g.ndata['h']))
        return g.ndata['z']
##############################################################################
# The predictor’s decision rule is just a decision rule for binary
# classification:
#
# .. math::
#
#
#    \hat{y}_v = \text{argmax}_{i \in \{0, 1\}} \left[g_\Phi (h_v^{(T)})\right]_i \tag{5}
#
# where the predictor is denoted by :math:`g_\Phi` and :math:`\hat{y}_v`
# indicates whether the node :math:`v` is marked or not.
#
# Our implementation can be further accelerated using DGL's :mod:`built-in
# functions <dgl.function>`, which maps
# the computation to more efficient sparse operators in the backend
# framework (e.g., MXNet/Gluon, PyTorch). Please see
# the :doc:`Graph convolution network <1_gcn>` tutorial
# for more details.
#
# Efficient semi-supervised learning on graph
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# In our setting, we can observe the entire structure of one fixed graph as well
# as the feature vector of each node. However, we only have access to the
# labels of some (very few) of the nodes. We will train the neural
# flood-fill algorithm in this setting as well.
#
# We initialize feature vectors ``'x'`` and node embeddings ``'h'``
# first.
#
import numpy as np
import numpy.random as npr

n = g.number_of_nodes()
n_hidden = 16

g.ndata['x'] = mx.nd.eye(n, n)
g.ndata['y'] = mx.nd.concat(*[i * mx.nd.ones([L, 1], dtype='float32')
                             for i in range(N)], dim=0)
g.ndata['h'] = mx.nd.zeros([n, n_hidden])

r_train = 0.2  # the ratio of test nodes
n_train = int(r_train * n)
nodes_train = npr.choice(range(n), n_train, replace=True)
test_bitmap = np.ones(shape=(n))
test_bitmap[nodes_train] = 0
nodes_test = np.where(test_bitmap)[0]
##############################################################################
# Unrolling the iterations in Eq. :math:`(4)`, we have the following
# expression for updated node embeddings:
#
# .. math::
#
#
#    h_v^{(T)} = \calt_\Theta^T (h_1^{(0)}, ..., h_n^{(0)}) \qquad v \in \calv \tag{6}
#
# where :math:`\calt_\Theta^T` means applying :math:`\calt_\Theta` for
# :math:`T` times. These updated node embeddings are fed to :math:`g_\Phi`
# as in Eq. :math:`(5)`. These steps are fully differentiable and the
# neural flood-fill algorithm can thus be trained in an end-to-end
# fashion. Denoting the binary cross-entropy loss by :math:`l`, we have a
# loss function in the following form:
#
# .. math::
#
#
#    \call (\Theta, \Phi) = \frac1{\left|\calv_y\right|} \sum_{v \in \calv_y} l \left(g_\Phi \left(\left[\calt_\Theta^T (h_1^{(0)}, ..., h_n^{(0)})\right]_v \right), y_v\right) \tag{7}
#
# After computing :math:`\call (\Theta, \Phi)`, we can update
# :math:`\Theta` and :math:`\Phi` using the gradients
# :math:`\nabla_\Theta \call (\Theta, \Phi)` and
# :math:`\nabla_\Phi \call (\Theta, \Phi)`. One problem with Eq.
# :math:`(7)` is that computing :math:`\nabla_\Theta \call (\Theta, \Phi)`
# and :math:`\nabla_\Phi \call (\Theta, \Phi)` requires back-propagating
# :math:`T` times through :math:`\calt_\Theta`, which may be slow in
# practice. So we adopt the following “steady-state” loss function, which
# only incorporates the last node embedding update in back-propagation:
#
# .. math::
#
#
#    \call_\text{SteadyState} (\Theta, \Phi) = \frac1{\left|\calv_y\right|} \sum_{v \in \calv_y} l \left(g_\Phi \left(\left[\calt_\Theta (h_1^{(T - 1)}, ..., h_n^{(T - 1)})\right]_v, y_v\right)\right) \tag{8}
#
# The following implements one step of training with
# :math:`\call_\text{SteadyState}`. Note that ``g`` in the following is
# :math:`\calg_y` instead of :math:`\calg`.
#
def update_parameters(g, label_nodes, steady_state_operator, predictor, trainer):
    n = g.number_of_nodes()
    with mx.autograd.record():
        steady_state_operator(g)
        z = predictor(g)[label_nodes]
        y = g.ndata['y'].reshape(n)[label_nodes]  # label
        loss = mx.nd.softmax_cross_entropy(z, y)
    loss.backward()
    trainer.step(n)  # divide gradients by the number of labelled nodes
    return loss.asnumpy()[0]
##############################################################################
# We are now ready to implement the training procedure, which is in two
# phases:
#
# -  The first phase updates node embeddings several times using
#    :math:`\calt_\Theta` to attain an approximately steady state
# -  The second phase trains :math:`\calt_\Theta` and :math:`g_\Phi` using
#    this steady state.
#
# Note that we update the node embeddings of :math:`\calg` instead of
# :math:`\calg_y` only. The reason lies in the semi-supervised learning
# setting: to do inference on :math:`\calg`, we need node embeddings on
# :math:`\calg` instead of on :math:`\calg_y` only.
#
def train(g, label_nodes, steady_state_operator, predictor, trainer):
     # first phase
    for i in range(n_embedding_updates):
        update_embeddings(g, steady_state_operator)
    # second phase
    for i in range(n_parameter_updates):
        loss = update_parameters(g, label_nodes, steady_state_operator, predictor, trainer)
    return loss
##############################################################################
# Scaling up with Stochastic Subgraph Training
# --------------------------------------------
#
# The computation time per update is linear to the number of edges in a
# graph. If we have a gigantic graph with billions of nodes and edges, the
# update function would be inefficient.
#
# A possible improvement draws analogy from minibatch training on large
# datasets: instead of computing gradients on the entire graph, we only
# consider some subgraphs randomly sampled from the labelled nodes.
# Mathematically, we have the following loss function:
#
# .. math::
#
#
#    \call_\text{StochasticSteadyState} (\Theta, \Phi) = \frac1{\left|\calv_y^{(k)}\right|} \sum_{v \in \calv_y^{(k)}} l \left(g_\Phi \left(\left[\calt_\Theta (h_1, ..., h_n)\right]_v\right), y_v\right)
#
# where :math:`\calv_y^{(k)}` is the subset sampled for iteration
# :math:`k`.
#
# In this training procedure, we also update node embeddings only on
# sampled subgraphs, which is perhaps not surprising if you know
# stochastic fixed-point iteration.
#
# Neighbor sampling
# ~~~~~~~~~~~~~~~~~
#
# We use *neighbor sampling* as our subgraph sampling strategy. Neighbor
# sampling traverses small neighborhoods from seed nodes with BFS. For
# each newly sampled node, a small subset of neighboring nodes are sampled
# and added to the subgraph along with the connecting edges, unless the
# node reaches the maximum of :math:`k` hops from the seeding node.
#
# The following shows neighbor sampling with 2 seed nodes at a time, a
# maximum of 2 hops, and a maximum of 3 neighboring nodes.
#
# |image1|
#
# DGL supports very efficient subgraph sampling natively to help users
# scale algorithms to large graphs. Currently, DGL provides the
# :func:`~dgl.contrib.sampling.sampler.NeighborSampler`
# API, which returns a subgraph iterator that samples multiple subgraphs
# at a time with neighbor sampling.
#
# The following code demonstrates how to use the ``NeighborSampler`` to
# sample subgraphs, and stores the nodes and edges of the subgraph, as
# well as seed nodes in each iteration:
#
nx_G = nx.erdos_renyi_graph(36, 0.06)
G = dgl.DGLGraph(nx_G.to_directed(), readonly=True)
sampler = dgl.contrib.sampling.NeighborSampler(
       G, 2, 3, num_hops=2, shuffle=True)
nid = []
eid = []
for subg, aux_info in sampler:
    nid.append(subg.parent_nid.asnumpy())
    eid.append(subg.parent_eid.asnumpy())

##############################################################################
# Sampler with DGL
# ~~~~~~~~~~~~~~~~
#
# The code illustrates the training process in mini-batches.
#
def update_embeddings_subgraph(g, seed_nodes, steady_state_operator):
    # Note that we are only updating the embeddings of seed nodes here.
    # The reason is that only the seed nodes have ample information
    # from neighbors, especially if the subgraph is small (e.g. 1-hops)
    prev_h = g.ndata['h'][seed_nodes]
    next_h = steady_state_operator(g)[seed_nodes]
    g.ndata['h'][seed_nodes] = (1 - alpha) * prev_h + alpha * next_h

def train_on_subgraphs(g, label_nodes, batch_size,
                       steady_state_operator, predictor, trainer):
    # To train SSE, we create two subgraph samplers with the
    # `NeighborSampler` API for each phase.
 
    # The first phase samples from all vertices in the graph.
    sampler = dgl.contrib.sampling.NeighborSampler(
            g, batch_size, g.number_of_nodes(), num_hops=1, return_seed_id=True)
 
    # The second phase only samples from labeled vertices.
    sampler_train = dgl.contrib.sampling.NeighborSampler(
            g, batch_size, g.number_of_nodes(), seed_nodes=label_nodes, num_hops=1,
            return_seed_id=True)
    for i in range(n_embedding_updates):
        subg, aux_info = next(sampler)
        seeds = aux_info['seeds']
        # Currently, subgraphing does not copy or share features
        # automatically.  Therefore, we need to copy the node
        # embeddings of the subgraph from the parent graph with
        # `copy_from_parent()` before computing...
        subg.copy_from_parent()
        subg_seeds = subg.map_to_subgraph_nid(seeds)
        update_embeddings_subgraph(subg, subg_seeds, steady_state_operator)
        # ... and copy them back to the parent graph with
        # `copy_to_parent()` afterwards.
        subg.copy_to_parent()
    for i in range(n_parameter_updates):
        try:
            subg, aux_info = next(sampler_train)
            seeds = aux_info['seeds']
        except:
            break
        # Again we need to copy features from parent graph
        subg.copy_from_parent()
        subg_seeds = subg.map_to_subgraph_nid(seeds)
        loss = update_parameters(subg, subg_seeds,
                                 steady_state_operator, predictor, trainer)
        # We don't need to copy the features back to parent graph.
    return loss

##############################################################################
# We also define a helper function that reports prediction accuracy:

def test(g, test_nodes, steady_state_operator, predictor):
    predictor(g)
    y_bar = mx.nd.argmax(g.ndata['z'], axis=1)[test_nodes]
    y = g.ndata['y'].reshape(n)[test_nodes]
    accuracy = mx.nd.sum(y_bar == y) / len(test_nodes)
    return accuracy.asnumpy()[0]

##############################################################################
# Some routine preparations for training:
#
lr = 1e-3
activation = 'relu'

steady_state_operator = SteadyStateOperator(n_hidden, activation)
predictor = Predictor(n_hidden, activation)
steady_state_operator.initialize()
predictor.initialize()
params = steady_state_operator.collect_params()
params.update(predictor.collect_params())
trainer = gluon.Trainer(params, 'adam', {'learning_rate' : lr})

##############################################################################
# Now let’s train it! As before, nodes reachable from :math:`s` are
# gradually “infected”, except that behind the scene is a neural network!
#
n_epochs = 35
n_embedding_updates = 8
n_parameter_updates = 5
alpha = 0.1
batch_size = 64

y_bars = []
for i in range(n_epochs):
    loss = train_on_subgraphs(g, nodes_train, batch_size, steady_state_operator, predictor, trainer)
 
    accuracy_train = test(g, nodes_train, steady_state_operator, predictor)
    accuracy_test = test(g, nodes_test, steady_state_operator, predictor)
    print("Iter {:05d} | Train acc {:.4} | Test acc {:.4f}".format(i, accuracy_train, accuracy_test))
    y_bar = mx.nd.argmax(g.ndata['z'], axis=1)
    y_bars.append(y_bar)

##############################################################################
# |image2|
#
# In this tutorial, we use a very small toy graph to demonstrate the
# subgraph training for easy visualization. Subgraph training actually
# helps us scale to gigantic graphs. For instance, we have successfully
# scaled SSE to a graph with 50 million nodes and 150 million edges in a
# single P3.8x large instance and one epoch only takes about 160 seconds.
#
Minjie Wang's avatar
Minjie Wang committed
540
# See full examples `here <https://github.com/dmlc/dgl/tree/master/examples/mxnet/sse>`_.
541
542
543
544
#
# .. |image0| image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/img/floodfill-paths.gif
# .. |image1| image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/img/neighbor-sampling.gif
# .. |image2| image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/img/sse.gif