tree_lstm.py 4.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
https://arxiv.org/abs/1503.00075
"""
import time
import itertools
import networkx as nx
import numpy as np
import mxnet as mx
from mxnet import gluon
import dgl

class _TreeLSTMCellNodeFunc(gluon.HybridBlock):
    def hybrid_forward(self, F, iou, b_iou, c):
        iou = F.broadcast_add(iou, b_iou)
        i, o, u = iou.split(num_outputs=3, axis=1)
        i, o, u = i.sigmoid(), o.sigmoid(), u.tanh()
        c = i * u + c
        h = o * c.tanh()

        return h, c

class _TreeLSTMCellReduceFunc(gluon.HybridBlock):
    def __init__(self, U_iou, U_f):
        super(_TreeLSTMCellReduceFunc, self).__init__()
        self.U_iou = U_iou
        self.U_f = U_f

    def hybrid_forward(self, F, h, c):
        h_cat = h.reshape((0, -1))
        f = self.U_f(h_cat).sigmoid().reshape_like(h)
        c = (f * c).sum(axis=1)
        iou = self.U_iou(h_cat)
        return iou, c

class _TreeLSTMCell(gluon.HybridBlock):
    def __init__(self, h_size):
        super(_TreeLSTMCell, self).__init__()
        self._apply_node_func = _TreeLSTMCellNodeFunc()
        self.b_iou = self.params.get('bias', shape=(1, 3 * h_size),
                                     init='zeros')

    def message_func(self, edges):
        return {'h': edges.src['h'], 'c': edges.src['c']}

    def apply_node_func(self, nodes):
        iou = nodes.data['iou']
        b_iou, c = self.b_iou.data(iou.context), nodes.data['c']
        h, c = self._apply_node_func(iou, b_iou, c)
        return {'h' : h, 'c' : c}

class TreeLSTMCell(_TreeLSTMCell):
    def __init__(self, x_size, h_size):
        super(TreeLSTMCell, self).__init__(h_size)
        self._reduce_func = _TreeLSTMCellReduceFunc(
                gluon.nn.Dense(3 * h_size, use_bias=False),
                gluon.nn.Dense(2 * h_size))
        self.W_iou = gluon.nn.Dense(3 * h_size, use_bias=False)

    def reduce_func(self, nodes):
        h, c = nodes.mailbox['h'], nodes.mailbox['c']
        iou, c = self._reduce_func(h, c)
        return {'iou': iou, 'c': c}

class ChildSumTreeLSTMCell(_TreeLSTMCell):
    def __init__(self, x_size, h_size):
        super(ChildSumTreeLSTMCell, self).__init__()
        self.W_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
        self.U_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
        self.U_f = gluon.nn.Dense(h_size)

    def reduce_func(self, nodes):
        h_tild = nodes.mailbox['h'].sum(axis=1)
        f = self.U_f(nodes.mailbox['h']).sigmoid()
        c = (f * nodes.mailbox['c']).sum(axis=1)
        return {'iou': self.U_iou(h_tild), 'c': c}

class TreeLSTM(gluon.nn.Block):
    def __init__(self,
                 num_vocabs,
                 x_size,
                 h_size,
                 num_classes,
                 dropout,
                 cell_type='nary',
                 pretrained_emb=None,
                 ctx=None):
        super(TreeLSTM, self).__init__()
        self.x_size = x_size
        self.embedding = gluon.nn.Embedding(num_vocabs, x_size)
        if pretrained_emb is not None:
            print('Using glove')
            self.embedding.initialize(ctx=ctx)
            self.embedding.weight.set_data(pretrained_emb)
        self.dropout = gluon.nn.Dropout(dropout)
        self.linear = gluon.nn.Dense(num_classes)
        cell = TreeLSTMCell if cell_type == 'nary' else ChildSumTreeLSTMCell
        self.cell = cell(x_size, h_size)

    def forward(self, batch, h, c):
        """Compute tree-lstm prediction given a batch.
        Parameters
        ----------
        batch : dgl.data.SSTBatch
            The data batch.
        h : Tensor
            Initial hidden state.
        c : Tensor
            Initial cell state.
        Returns
        -------
        logits : Tensor
            The prediction of each node.
        """
        g = batch.graph
        g.register_message_func(self.cell.message_func)
        g.register_reduce_func(self.cell.reduce_func)
        g.register_apply_node_func(self.cell.apply_node_func)
        # feed embedding
        embeds = self.embedding(batch.wordid * batch.mask)
        g.ndata['iou'] = self.cell.W_iou(self.dropout(embeds)) * batch.mask.expand_dims(-1)
        g.ndata['h'] = h
        g.ndata['c'] = c
        # propagate
        dgl.prop_nodes_topo(g)
        # compute logits
        h = self.dropout(g.ndata.pop('h'))
        logits = self.linear(h)
        return logits