test_sampler.py 12.5 KB
Newer Older
1
import backend as F
Da Zheng's avatar
Da Zheng committed
2
3
4
5
import numpy as np
import scipy as sp
import dgl
from dgl import utils
6
from numpy.testing import assert_array_equal
Da Zheng's avatar
Da Zheng committed
7

8
9
np.random.seed(42)

Da Zheng's avatar
Da Zheng committed
10
11
12
13
def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    return dgl.DGLGraph(arr, readonly=True)

14
15
16
def test_create_full():
    g = generate_rand_graph(100)
    full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5)
Da Zheng's avatar
Da Zheng committed
17
    assert full_nf.number_of_nodes() == g.number_of_nodes() * 6
18
19
    assert full_nf.number_of_edges() == g.number_of_edges() * 5

Da Zheng's avatar
Da Zheng committed
20
21
22
def test_1neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
23
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
Da Zheng's avatar
Da Zheng committed
24
            g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)):
25
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
26
        assert len(seed_ids) == 1
27
        src, dst, eid = g.in_edges(seed_ids, form='all')
Da Zheng's avatar
Da Zheng committed
28
29
        assert subg.number_of_nodes() == len(src) + 1
        assert subg.number_of_edges() == len(src)
Da Zheng's avatar
Da Zheng committed
30

Da Zheng's avatar
Da Zheng committed
31
32
33
        assert seed_ids == subg.layer_parent_nid(-1)
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        assert F.array_equal(child_src, subg.layer_nid(0))
Da Zheng's avatar
Da Zheng committed
34

Da Zheng's avatar
Da Zheng committed
35
36
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
37
38

def is_sorted(arr):
39
    return np.sum(np.sort(arr) == arr, 0) == len(arr)
Da Zheng's avatar
Da Zheng committed
40
41

def verify_subgraph(g, subg, seed_id):
Da Zheng's avatar
Da Zheng committed
42
43
44
45
    seed_id = F.asnumpy(seed_id)
    seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1)))
    assert seed_id in seeds
    child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id]
46
    src, dst, eid = g.in_edges(seed_id, form='all')
Da Zheng's avatar
Da Zheng committed
47
48
    child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all')

49
    child_src = F.asnumpy(child_src)
Da Zheng's avatar
Da Zheng committed
50
51
52
53
54
    # We don't allow duplicate elements in the neighbor list.
    assert(len(np.unique(child_src)) == len(child_src))
    # The neighbor list also needs to be sorted.
    assert(is_sorted(child_src))

Da Zheng's avatar
Da Zheng committed
55
56
57
    # a neighbor in the subgraph must also exist in parent graph.
    for i in subg.map_to_parent_nid(child_src):
        assert i in src
Da Zheng's avatar
Da Zheng committed
58
59
60
61

def test_1neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
62
63
64
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
65
66
67
68
69
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

70
71
72
def test_prefetch_neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
73
74
75
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4, prefetch=True):
        seed_ids = subg.layer_parent_nid(-1)
76
77
78
79
80
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

Da Zheng's avatar
Da Zheng committed
81
82
83
def test_10neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
Da Zheng's avatar
Da Zheng committed
84
85
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(),
                                                     neighbor_type='in', num_workers=4):
86
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
87
        assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1)))
Da Zheng's avatar
Da Zheng committed
88

Da Zheng's avatar
Da Zheng committed
89
90
91
92
        src, dst, eid = g.in_edges(seed_ids, form='all')
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
93
94
95

def check_10neighbor_sampler(g, seeds):
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
96
97
98
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in',
                                                     num_workers=4, seed_nodes=seeds):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
99
100
101
102
103
104
105
106
107
108
109
        assert subg.number_of_nodes() <= 6 * len(seed_ids)
        assert subg.number_of_edges() <= 5 * len(seed_ids)
        for seed_id in seed_ids:
            verify_subgraph(g, subg, seed_id)

def test_10neighbor_sampler():
    g = generate_rand_graph(100)
    check_10neighbor_sampler(g, None)
    check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(),
                                                                  size=int(g.number_of_nodes() / 10))))

110
def _test_layer_sampler(prefetch=False):
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    g = generate_rand_graph(100)
    nid = g.nodes()
    src, dst, eid = g.all_edges(form='all', order='eid')
    n_batches = 5
    batch_size = 50
    seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False))
                    for i in range(n_batches)]
    seed_nodes = np.hstack(seed_batches)
    layer_sizes = [50] * 3
    LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler')
    sampler = LayerSampler(g, batch_size, layer_sizes, 'in',
                           seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch)
    for sub_g in sampler:
        assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes))
        sub_nid = F.arange(0, sub_g.number_of_nodes())
        assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid)))
                   for i in range(sub_g.num_layers))
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)),
                              F.asnumpy(nid)))
        sub_eid = F.arange(0, sub_g.number_of_edges())
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)),
                              F.asnumpy(eid)))
        assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch)
                   for seed_batch in seed_batches)

        sub_src, sub_dst = sub_g.all_edges(order='eid')
        for i in range(sub_g.num_blocks):
            block_eid = sub_g.block_eid(i)
            block_src = sub_g.map_to_parent_nid(sub_src[block_eid])
            block_dst = sub_g.map_to_parent_nid(sub_dst[block_eid])

            block_parent_eid = sub_g.block_parent_eid(i)
            block_parent_src = src[block_parent_eid]
            block_parent_dst = dst[block_parent_eid]

            assert np.all(F.asnumpy(block_src == block_parent_src))

        n_layers = sub_g.num_layers
        sub_n = sub_g.number_of_nodes()
        assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n
        n_blocks = sub_g.num_blocks
        sub_m = sub_g.number_of_edges()
        assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m

Da Zheng's avatar
Da Zheng committed
155
156
157
158
def test_layer_sampler():
    _test_layer_sampler()
    _test_layer_sampler(prefetch=True)

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def test_nonuniform_neighbor_sampler():
    # Construct a graph with
    # (1) A path (0, 1, ..., 99) with weight 1
    # (2) A bunch of random edges with weight 0.
    edges = []
    for i in range(99):
        edges.append((i, i + 1))
    for i in range(1000):
        edge = (np.random.randint(100), np.random.randint(100))
        if edge not in edges:
            edges.append(edge)
    src, dst = zip(*edges)
    g = dgl.DGLGraph()
    g.add_nodes(100)
    g.add_edges(src, dst)
    g.readonly()

    g.edata['w'] = F.cat([
        F.ones((99,), F.float64, F.cpu()),
        F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0)

    # Test 1-neighbor NodeFlow with 99 as target node.
    # The generated NodeFlow should only contain node i on layer i.
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
        assert nf.layer_parent_nid(i)[0] == i

    # Test the reverse direction
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
        assert nf.layer_parent_nid(i)[0] == 99 - i

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def test_setseed():
    g = generate_rand_graph(100)

    nids = []

    dgl.random.seed(42)
    for subg in dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1):
        nids.append(
            tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)))

    # reinitialize
    dgl.random.seed(42)
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)):
        item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))
        assert item == nids[i]

    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)):
        pass

Da Zheng's avatar
Da Zheng committed
223
def check_negative_sampler(mode, exclude_positive, neg_size):
224
    g = generate_rand_graph(100)
225
226
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
    g.edata['etype'] = F.tensor(etype)
227
228
229
230
231
232
233
234

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

235
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
236
    # Test the homogeneous graph.
237
    for pos_edges, neg_edges in EdgeSampler(g, 50,
238
239
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
Da Zheng's avatar
Da Zheng committed
240
241
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
242
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
243
244
245
        assert_array_equal(F.asnumpy(pos_edges.parent_eid[pos_leid]),
                           F.asnumpy(g.edge_ids(pos_edges.parent_nid[pos_lsrc],
                                                pos_edges.parent_nid[pos_ldst])))
246
247

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
248
249
250
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
251
252
253
254
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
255
256
257
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

Da Zheng's avatar
Da Zheng committed
258
        exist = neg_edges.edata['false_neg']
259
260
261
262
263
264
265
266
267
268
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)

    # Test the knowledge graph.
    for _, neg_edges in EdgeSampler(g, 50,
                                    negative_mode=mode,
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
Da Zheng's avatar
Da Zheng committed
269
270
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
271
272
273
274
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
Da Zheng's avatar
Da Zheng committed
275
        exists = neg_edges.edata['false_neg']
276
277
278
279
280
281
282
283
284
        neg_edges.edata['etype'] = g.edata['etype'][neg_eid]
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)

285
def test_negative_sampler():
Da Zheng's avatar
Da Zheng committed
286
287
288
289
    check_negative_sampler('PBG-head', False, 10)
    check_negative_sampler('head', True, 10)
    check_negative_sampler('head', False, 10)
    check_negative_sampler('head', False, 100)
290
291


Da Zheng's avatar
Da Zheng committed
292
if __name__ == '__main__':
293
    test_create_full()
Da Zheng's avatar
Da Zheng committed
294
295
296
297
    test_1neighbor_sampler_all()
    test_10neighbor_sampler_all()
    test_1neighbor_sampler()
    test_10neighbor_sampler()
Da Zheng's avatar
Da Zheng committed
298
    test_layer_sampler()
299
    test_nonuniform_neighbor_sampler()
300
    test_setseed()
301
    test_negative_sampler()