sampler.py 6.07 KB
Newer Older
ziqiaomeng's avatar
ziqiaomeng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import torch
import torchvision
from torch.autograd import Variable
import random
import time

Metapath = "Conference-Paper-Author-Paper-Conference"
num_walks_per_node = 1000
walk_length = 100

#construct mapping from text, could be changed to DGL later
def construct_id_dict():
    id_to_paper = {}
    id_to_author = {}
    id_to_conf = {}
    f_3 = open(".../id_author.txt", encoding="ISO-8859-1")
    f_4 = open(".../id_conf.txt", encoding="ISO-8859-1")
    f_5 = open(".../paper.txt", encoding="ISO-8859-1")
    while True:
        z = f_3.readline()
        if not z:
            break
        z = z.split('\t')
        identity = int(z[0])
        id_to_author[identity] = z[1].strip("\n")
    while True:
        w = f_4.readline()
        if not w:
            break;
        w = w.split('\t')
        identity = int(w[0])
        id_to_conf[identity] = w[1].strip("\n")
    while True:
        v = f_5.readline()
        if not v:
            break;
        v = v.split(' ')
        identity = int(v[0])
        paper_name = ""
        for s in range(5, len(v)):
            paper_name += v[s]
        paper_name = 'p' + paper_name
        id_to_paper[identity] = paper_name.strip('\n')
    f_3.close()
    f_4.close()
    f_5.close()
    return id_to_paper, id_to_author, id_to_conf

#construct mapping from text, could be changed to DGL later
def construct_types_mappings():
    paper_to_author = {}
    author_to_paper = {}
    paper_to_conf = {}
    conf_to_paper = {}
    f_1 = open(".../paper_author.txt", "r")
    f_2 = open(".../paper_conf.txt", "r")
    for x in f_1:
        x = x.split('\t')
        x[0] = int(x[0])
        x[1] = int(x[1].strip('\n'))
        if x[0] in paper_to_author:
            paper_to_author[x[0]].append(x[1])
        else:
            paper_to_author[x[0]] = []
            paper_to_author[x[0]].append(x[1])
        if x[1] in author_to_paper:
            author_to_paper[x[1]].append(x[0])
        else:
            author_to_paper[x[1]] = []
            author_to_paper[x[1]].append(x[0])
    for y in f_2:
        y = y.split('\t')
        y[0] = int(y[0])
        y[1] = int(y[1].strip('\n'))
        if y[0] in paper_to_conf:
            paper_to_conf[y[0]].append(y[1])
        else:
            paper_to_conf[y[0]] = []
            paper_to_conf[y[0]].append(y[1])
        if y[1] in conf_to_paper:
            conf_to_paper[y[1]].append(y[0])
        else:
            conf_to_paper[y[1]] = []
            conf_to_paper[y[1]].append(y[0])
    f_1.close()
    f_2.close()
    return paper_to_author, author_to_paper, paper_to_conf, conf_to_paper

#"conference - paper - Author - paper - conference" metapath sampling
def generate_metapath():
    output_path = open(".../output_path.txt", "w")
    id_to_paper, id_to_author, id_to_conf = construct_id_dict()
    paper_to_author, author_to_paper, paper_to_conf, conf_to_paper = construct_types_mappings()
    count = 0
    #loop all conferences
    for conf_id in conf_to_paper.keys():
        start_time = time.time()
        print("sampling" + str(count))
        conf = id_to_conf[conf_id]
        conf0 = conf
        #for each conference, simulate num_walks_per_node walks
        for i in range(num_walks_per_node):
            outline = conf0
            # each walk with length walk_length
            for j in range(walk_length):
                # C - P
                paper_list_1 = conf_to_paper[conf_id]
                # check whether the paper nodes link to any author node
                connections_1 = False
                available_paper_1 = []
                for k in range(len(paper_list_1)):
                    if paper_list_1[k] in paper_to_author:
                        available_paper_1.append(paper_list_1[k])
                num_p_1 = len(available_paper_1)
                if num_p_1 != 0:
                    connections_1 = True
                    paper_1_index = random.randrange(num_p_1)
                    #paper_id_1 = paper_list_1[paper_1_index]
                    paper_id_1 = available_paper_1[paper_1_index]
                    paper_1 = id_to_paper[paper_id_1]
                    outline += " " + paper_1
                else:
                    break
                # C - P - A
                author_list = paper_to_author[paper_id_1]
                num_a = len(author_list)
                # No need to check
                author_index = random.randrange(num_a)
                author_id = author_list[author_index]
                author = id_to_author[author_id]
                outline += " " + author
                # C - P - A - P
                paper_list_2 = author_to_paper[author_id]
                #check whether paper node links to any conference node
                connections_2 = False
                available_paper_2 = []
                for m in range(len(paper_list_2)):
                    if paper_list_2[m] in paper_to_conf:
                        available_paper_2.append(paper_list_2[m])
                num_p_2 = len(available_paper_2)
                if num_p_2 != 0:
                    connections_2 = True
                    paper_2_index = random.randrange(num_p_2)
                    paper_id_2 = available_paper_2[paper_2_index]
                    paper_2 = id_to_paper[paper_id_2]
                    outline += " " + paper_2
                else:
                    break
                # C - P - A - P - C
                conf_list = paper_to_conf[paper_id_2]
                num_c = len(conf_list)
                conf_index = random.randrange(num_c)
                conf_id = conf_list[conf_index]
                conf = id_to_conf[conf_id]
                outline += " " + conf
            if connections_1 and connections_2:
                output_path.write(outline + "\n")
            else:
                break
            # Note that the original mapping text has type indicator in front of each node just like "cVLDB"
            # So the sampling sequence looks like "cconference ppaper aauthor ppaper cconference"
        count += 1
        print("--- %s seconds ---" % (time.time() - start_time))
    output_path.close()


if __name__ == "__main__":
    generate_metapath()