uvm_table.hip 25.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// !!! This is a file automatically generated by hipify!!!
/*
 * Copyright (c) 2023, NVIDIA CORPORATION.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <hip/hip_cooperative_groups.h>
#include <hip/hip_runtime_api.h>
#include <immintrin.h>

#include <atomic>
#include <iostream>
#include <limits>
#include <mutex>
#include <uvm_table.hpp>

namespace cg = cooperative_groups;

namespace {

constexpr int set_size = 4;
constexpr int block_size = 256;

template <typename key_type>
__host__ __device__ key_type hash(key_type key) {
  return key;
}

template <typename key_type>
__global__ void hash_add_kernel(const key_type* new_keys, const int num_keys, key_type* keys,
                                const int num_sets, int* set_sizes, const int max_set_size,
                                key_type* missing_keys, int* num_missing_keys) {
  __shared__ key_type s_missing_keys[block_size];
  __shared__ int s_missing_count;
  __shared__ size_t s_missing_idx;

  auto grid = cg::this_grid();
  auto block = cg::this_thread_block();

  if (block.thread_rank() == 0) {
    s_missing_count = 0;
  }
  block.sync();

  size_t idx = grid.thread_rank();
  if (idx < num_keys) {
    auto key = new_keys[idx];
    size_t idx_set = hash(key) % num_sets;
    int prev_set_size = atomicAdd(&set_sizes[idx_set], 1);
    if (prev_set_size < max_set_size) {
      keys[idx_set * max_set_size + prev_set_size] = key;
    } else {
      int count = atomicAdd(&s_missing_count, 1);
      s_missing_keys[count] = key;
    }
  }

  block.sync();
  if (block.thread_rank() == 0) {
    s_missing_idx = atomicAdd(num_missing_keys, s_missing_count);
  }
  block.sync();
  for (size_t i = block.thread_rank(); i < s_missing_count; i += block.num_threads()) {
    missing_keys[s_missing_idx + i] = s_missing_keys[i];
  }
}

template <typename key_type, typename index_type>
__global__ void hash_query_kernel(const key_type* query_keys, int* num_keys_ptr,
                                  const key_type* keys, const size_t num_sets,
                                  const int max_set_size, index_type* output_indices) {
  constexpr int tile_size = set_size;
  auto grid = cg::this_grid();
  auto block = cg::this_thread_block();
  auto tile = cg::tiled_partition<tile_size>(block);
  int num_keys = *num_keys_ptr;
  if (num_keys == 0) return;

#if (DTK_VERSION < 11060)
  size_t num_threads_per_grid = grid.size();
#else
  size_t num_threads_per_grid = grid.num_threads();
#endif

  size_t step = (num_keys - 1) / num_threads_per_grid + 1;
  for (size_t i = 0; i < step; i++) {
    size_t idx = i * num_threads_per_grid + grid.thread_rank();
    key_type query_key = std::numeric_limits<key_type>::max();
    if (idx < num_keys) {
      query_key = query_keys[idx];
    }
    auto idx_set = hash(query_key) % num_sets;
    for (int j = 0; j < tile_size; j++) {
      auto current_idx_set = tile.shfl(idx_set, j);
      auto current_query_key = tile.shfl(query_key, j);
      if (current_query_key == std::numeric_limits<key_type>::max()) {
        continue;
      }
      auto candidate_key = keys[current_idx_set * set_size + tile.thread_rank()];
      int existed = tile.ballot(current_query_key == candidate_key);
      auto current_idx = tile.shfl(idx, 0) + j;
      if (existed) {
        int src_lane = __ffs(existed) - 1;
        size_t found_idx = current_idx_set * set_size + src_lane;
        output_indices[current_idx] = num_sets * src_lane + current_idx_set;
      } else {
        output_indices[current_idx] = std::numeric_limits<index_type>::max();
      }
    }
  }
}

template <typename key_type, typename index_type>
__global__ void hash_query_kernel(const key_type* query_keys, const int num_keys,
                                  const key_type* keys, const size_t num_sets,
                                  const int max_set_size, index_type* output_indices,
                                  key_type* missing_keys, int* missing_positions,
                                  int* missing_count) {
  __shared__ key_type s_missing_keys[block_size];
  __shared__ key_type s_missing_positions[block_size];
  __shared__ int s_missing_count;
  __shared__ int s_missing_idx;

  constexpr int tile_size = set_size;

  auto grid = cg::this_grid();
  auto block = cg::this_thread_block();
  auto tile = cg::tiled_partition<tile_size>(block);

  if (block.thread_rank() == 0) {
    s_missing_count = 0;
  }
  block.sync();

  size_t idx = grid.thread_rank();
  key_type query_key = std::numeric_limits<key_type>::max();
  if (idx < num_keys) {
    query_key = query_keys[idx];
  }
  auto idx_set = hash(query_key) % num_sets;

  for (int j = 0; j < tile_size; j++) {
    auto current_idx_set = tile.shfl(idx_set, j);
    auto current_query_key = tile.shfl(query_key, j);
    if (current_query_key == std::numeric_limits<key_type>::max()) {
      continue;
    }
    auto candidate_key = keys[current_idx_set * set_size + tile.thread_rank()];
    int existed = tile.ballot(current_query_key == candidate_key);
    if (existed) {
      int src_lane = __ffs(existed) - 1;
      size_t found_idx = current_idx_set * set_size + src_lane;
      output_indices[tile.shfl(idx, 0) + j] = num_sets * src_lane + current_idx_set;
    } else {
      auto current_idx = tile.shfl(idx, 0) + j;
      output_indices[current_idx] = std::numeric_limits<index_type>::max();
      if (tile.thread_rank() == 0) {
        int s_count = atomicAdd(&s_missing_count, 1);
        s_missing_keys[s_count] = current_query_key;
        s_missing_positions[s_count] = current_idx;
      }
    }
  }

  if (missing_keys == nullptr) {
    if (grid.thread_rank() == 0 && missing_count) {
      *missing_count = 0;
    }
    return;
  }
  block.sync();
  if (block.thread_rank() == 0) {
    s_missing_idx = atomicAdd(missing_count, s_missing_count);
  }
  block.sync();
  for (size_t i = block.thread_rank(); i < s_missing_count; i += block.num_threads()) {
    missing_keys[s_missing_idx + i] = s_missing_keys[i];
    missing_positions[s_missing_idx + i] = s_missing_positions[i];
  }
}

template <int warp_size>
__forceinline__ __device__ void warp_tile_copy(const size_t lane_idx,
                                               const size_t emb_vec_size_in_float,
                                               volatile float* d_dst, const float* d_src) {
  // 16 bytes align
  if (emb_vec_size_in_float % 4 != 0 || (size_t)d_dst % 16 != 0 || (size_t)d_src % 16 != 0) {
#pragma unroll
    for (size_t i = lane_idx; i < emb_vec_size_in_float; i += warp_size) {
      d_dst[i] = d_src[i];
    }
  } else {
#pragma unroll
    for (size_t i = lane_idx; i < emb_vec_size_in_float / 4; i += warp_size) {
      *(float4*)(d_dst + i * 4) = __ldg((const float4*)(d_src + i * 4));
    }
  }
}

template <typename index_type, typename vec_type>
__global__ void read_vectors_kernel(const index_type* query_indices, const int num_keys,
                                    const vec_type* vectors, const int vec_size,
                                    vec_type* output_vectors) {
  constexpr int warp_size = 32;

  auto grid = cg::this_grid();
  auto block = cg::this_thread_block();
  auto tile = cg::tiled_partition<warp_size>(block);

#if (DTK_VERSION < 11060)
  auto num_threads_per_grid = grid.size();
#else
  auto num_threads_per_grid = grid.num_threads();
#endif

  for (int step = 0; step < (num_keys - 1) / num_threads_per_grid + 1; step++) {
    int key_num = step * num_threads_per_grid + grid.thread_rank();
    index_type idx = std::numeric_limits<index_type>::max();
    if (key_num < num_keys) {
      idx = query_indices[key_num];
    }
#pragma unroll 4
    for (size_t j = 0; j < warp_size; j++) {
      index_type current_idx = tile.shfl(idx, j);
      index_type idx_write = tile.shfl(key_num, 0) + j;
      if (current_idx == std::numeric_limits<index_type>::max()) continue;
      warp_tile_copy<warp_size>(tile.thread_rank(), vec_size, output_vectors + idx_write * vec_size,
                                vectors + current_idx * vec_size);
    }
  }
}

template <typename index_type, typename vec_type>
__global__ void distribute_vectors_kernel(const index_type* postions, const size_t num_keys,
                                          const vec_type* vectors, const int vec_size,
                                          vec_type* output_vectors) {
  constexpr int warp_size = 32;

  auto grid = cg::this_grid();
  auto block = cg::this_thread_block();
  auto tile = cg::tiled_partition<warp_size>(block);

#if (DTK_VERSION < 11060)
  auto num_threads_per_grid = grid.size();
#else
  auto num_threads_per_grid = grid.num_threads();
#endif

  for (size_t step = 0; step < (num_keys - 1) / num_threads_per_grid + 1; step++) {
    size_t key_num = step * num_threads_per_grid + grid.thread_rank();
    index_type idx = std::numeric_limits<index_type>::max();
    if (key_num < num_keys) {
      idx = postions[key_num];
    }
#pragma unroll 4
    for (size_t j = 0; j < warp_size; j++) {
      size_t idx_write = tile.shfl(idx, j);
      size_t idx_read = tile.shfl(key_num, 0) + j;
      if (idx_write == std::numeric_limits<index_type>::max()) continue;
      warp_tile_copy<warp_size>(tile.thread_rank(), vec_size,
                                output_vectors + (size_t)idx_write * vec_size,
                                vectors + (size_t)idx_read * vec_size);
    }
  }
}

}  // namespace

namespace gpu_cache {
template <typename key_type, typename index_type, typename vec_type>
UvmTable<key_type, index_type, vec_type>::UvmTable(const size_t device_table_capacity,
                                                   const size_t host_table_capacity,
                                                   const int max_batch_size, const int vec_size,
                                                   const vec_type default_value)
    : max_batch_size_(::max(100000, max_batch_size)),
      vec_size_(vec_size),
      num_set_((device_table_capacity - 1) / set_size + 1),
      num_host_set_((host_table_capacity - 1) / set_size + 1),
      table_capacity_(num_set_ * set_size),
      default_vector_(vec_size, default_value),
      device_table_(device_table_capacity, set_size, max_batch_size_),
      host_table_(host_table_capacity * 1.3, set_size, max_batch_size_) {
  CUDA_CHECK(hipMalloc(&d_keys_buffer_, sizeof(key_type) * max_batch_size_));
  CUDA_CHECK(hipMalloc(&d_vectors_buffer_, sizeof(vec_type) * max_batch_size_ * vec_size_));
  CUDA_CHECK(hipMalloc(&d_vectors_, sizeof(vec_type) * device_table_.capacity * vec_size_));

  CUDA_CHECK(hipMalloc(&d_output_indices_, sizeof(index_type) * max_batch_size_));
  CUDA_CHECK(hipMalloc(&d_output_host_indices_, sizeof(index_type) * max_batch_size_));
  CUDA_CHECK(hipHostMalloc(&h_output_host_indices_, sizeof(index_type) * max_batch_size_));
  CUDA_CHECK(hipMalloc(&d_missing_keys_, sizeof(key_type) * max_batch_size_));
  CUDA_CHECK(hipMalloc(&d_missing_positions_, sizeof(int) * max_batch_size_));
  CUDA_CHECK(hipMalloc(&d_missing_count_, sizeof(int)));
  CUDA_CHECK(hipMemset(d_missing_count_, 0, sizeof(int)));
  CUDA_CHECK(hipStreamCreate(&query_stream_));
  for (int i = 0; i < num_buffers_; i++) {
    int batch_size_per_buffer = ceil(1.0 * max_batch_size_ / num_buffers_);
    CUDA_CHECK(
        hipHostMalloc(&h_cpy_buffers_[i], sizeof(vec_type) * batch_size_per_buffer * vec_size));
    CUDA_CHECK(hipMalloc(&d_cpy_buffers_[i], sizeof(vec_type) * batch_size_per_buffer * vec_size));
    CUDA_CHECK(hipStreamCreate(&cpy_streams_[i]));
    CUDA_CHECK(hipEventCreate(&cpy_events_[i]));
  }
  CUDA_CHECK(hipHostMalloc(&h_missing_keys_, sizeof(key_type) * max_batch_size_));
  CUDA_CHECK(hipEventCreate(&query_event_));
  h_vectors_.resize(host_table_.capacity * vec_size_);
}

template <typename key_type, typename index_type, typename vec_type>
void UvmTable<key_type, index_type, vec_type>::add(const key_type* h_keys,
                                                   const vec_type* h_vectors,
                                                   const size_t num_keys) {
  std::vector<key_type> h_missing_keys;
  size_t num_batches = (num_keys - 1) / max_batch_size_ + 1;
  for (size_t i = 0; i < num_batches; i++) {
    size_t this_batch_size =
        i != num_batches - 1 ? max_batch_size_ : num_keys - i * max_batch_size_;
    CUDA_CHECK(hipMemcpy(d_keys_buffer_, h_keys + i * max_batch_size_,
                          sizeof(*d_keys_buffer_) * this_batch_size, hipMemcpyHostToDevice));
    CUDA_CHECK(hipMemset(d_missing_count_, 0, sizeof(*d_missing_count_)));
    device_table_.add(d_keys_buffer_, this_batch_size, d_missing_keys_, d_missing_count_, 0);
    CUDA_CHECK(hipDeviceSynchronize());
    int num_missing_keys;
    CUDA_CHECK(hipMemcpy(&num_missing_keys, d_missing_count_, sizeof(num_missing_keys),
                          hipMemcpyDeviceToHost));
    size_t prev_size = h_missing_keys.size();
    h_missing_keys.resize(prev_size + num_missing_keys);
    CUDA_CHECK(hipMemcpy(h_missing_keys.data() + prev_size, d_missing_keys_,
                          sizeof(*d_missing_keys_) * num_missing_keys, hipMemcpyDeviceToHost));
  }

  std::vector<key_type> h_final_missing_keys;
  num_batches = h_missing_keys.size() ? (h_missing_keys.size() - 1) / max_batch_size_ + 1 : 0;
  for (size_t i = 0; i < num_batches; i++) {
    size_t this_batch_size =
        i != num_batches - 1 ? max_batch_size_ : h_missing_keys.size() - i * max_batch_size_;
    CUDA_CHECK(hipMemcpy(d_keys_buffer_, h_missing_keys.data() + i * max_batch_size_,
                          sizeof(*d_keys_buffer_) * this_batch_size, hipMemcpyHostToDevice));
    CUDA_CHECK(hipMemset(d_missing_count_, 0, sizeof(*d_missing_count_)));
    host_table_.add(d_keys_buffer_, this_batch_size, d_missing_keys_, d_missing_count_, 0);
    CUDA_CHECK(hipDeviceSynchronize());
    int num_missing_keys;
    CUDA_CHECK(hipMemcpy(&num_missing_keys, d_missing_count_, sizeof(num_missing_keys),
                          hipMemcpyDeviceToHost));
    size_t prev_size = h_final_missing_keys.size();
    h_final_missing_keys.resize(prev_size + num_missing_keys);
    CUDA_CHECK(hipMemcpy(h_final_missing_keys.data() + prev_size, d_missing_keys_,
                          sizeof(*d_missing_keys_) * num_missing_keys, hipMemcpyDeviceToHost));
  }

  std::vector<key_type> h_keys_buffer(max_batch_size_);
  std::vector<index_type> h_indices_buffer(max_batch_size_);
  std::vector<int> h_positions_buffer(max_batch_size_);

  num_batches = (num_keys - 1) / max_batch_size_ + 1;

  size_t num_hit_keys = 0;
  for (size_t i = 0; i < num_batches; i++) {
    size_t this_batch_size =
        i != num_batches - 1 ? max_batch_size_ : num_keys - i * max_batch_size_;
    CUDA_CHECK(hipMemcpy(d_keys_buffer_, h_keys + i * max_batch_size_,
                          sizeof(*d_keys_buffer_) * this_batch_size, hipMemcpyHostToDevice));
    CUDA_CHECK(hipMemset(d_missing_count_, 0, sizeof(*d_missing_count_)));
    device_table_.query(d_keys_buffer_, this_batch_size, d_output_indices_, d_missing_keys_,
                        d_missing_positions_, d_missing_count_, 0);
    CUDA_CHECK(hipStreamSynchronize(0));

    CUDA_CHECK(hipMemcpy(d_vectors_buffer_, h_vectors + i * max_batch_size_ * vec_size_,
                          sizeof(*d_vectors_) * this_batch_size * vec_size_,
                          hipMemcpyHostToDevice));
    CUDA_CHECK(hipStreamSynchronize(0));
    if (num_hit_keys < device_table_.capacity) {
     hipLaunchKernelGGL(( distribute_vectors_kernel), dim3((this_batch_size - 1) / block_size + 1), dim3(block_size), 0, 0, 
          d_output_indices_, this_batch_size, d_vectors_buffer_, vec_size_, d_vectors_);
      CUDA_CHECK(hipStreamSynchronize(0));
    }

    int num_missing_keys;
    CUDA_CHECK(hipMemcpy(&num_missing_keys, d_missing_count_, sizeof(num_missing_keys),
                          hipMemcpyDeviceToHost));
    num_hit_keys += this_batch_size - num_missing_keys;
    host_table_.query(d_missing_keys_, num_missing_keys, d_output_indices_, nullptr, nullptr,
                      nullptr, 0);

    CUDA_CHECK(hipMemcpy(h_keys_buffer.data(), d_missing_keys_,
                          sizeof(*d_missing_keys_) * num_missing_keys, hipMemcpyDeviceToHost))

    CUDA_CHECK(hipMemcpy(h_indices_buffer.data(), d_output_indices_,
                          sizeof(*d_output_indices_) * num_missing_keys, hipMemcpyDeviceToHost))

    CUDA_CHECK(hipMemcpy(h_positions_buffer.data(), d_missing_positions_,
                          sizeof(*d_missing_positions_) * num_missing_keys, hipMemcpyDeviceToHost))

    for (int j = 0; j < num_missing_keys; j++) {
      if (h_indices_buffer[j] != std::numeric_limits<index_type>::max()) {
        memcpy(h_vectors_.data() + h_indices_buffer[j] * vec_size_,
               h_vectors + (i * max_batch_size_ + h_positions_buffer[j]) * vec_size_,
               sizeof(*h_vectors) * vec_size_);
      } else {
        size_t prev_idx = h_vectors_.size() / vec_size_;
        h_final_missing_items_.emplace(h_keys_buffer[j], prev_idx);
        h_vectors_.resize(h_vectors_.size() + vec_size_);
        memcpy(h_vectors_.data() + prev_idx * vec_size_,
               h_vectors + (i * max_batch_size_ + h_positions_buffer[j]) * vec_size_,
               sizeof(*h_vectors) * vec_size_);
      }
    }
  }
  CUDA_CHECK(hipMemset(d_missing_count_, 0, sizeof(*d_missing_count_)));
}

template <typename key_type, typename index_type, typename vec_type>
void UvmTable<key_type, index_type, vec_type>::query(const key_type* d_keys, const int num_keys,
                                                     vec_type* d_vectors, hipStream_t stream) {
  if (!num_keys) return;
  CUDA_CHECK(hipEventRecord(query_event_, stream));
  CUDA_CHECK(hipStreamWaitEvent(query_stream_, query_event_));

  static_assert(num_buffers_ >= 2);
  device_table_.query(d_keys, num_keys, d_output_indices_, d_missing_keys_, d_missing_positions_,
                      d_missing_count_, query_stream_);

  CUDA_CHECK(hipEventRecord(query_event_, query_stream_));
  CUDA_CHECK(hipStreamWaitEvent(cpy_streams_[0], query_event_));

  int num_missing_keys;
  CUDA_CHECK(hipMemcpyAsync(&num_missing_keys, d_missing_count_, sizeof(*d_missing_count_),
                             hipMemcpyDeviceToHost, cpy_streams_[0]));

  host_table_.query(d_missing_keys_, d_missing_count_, d_output_host_indices_, query_stream_);
  CUDA_CHECK(hipStreamSynchronize(cpy_streams_[0]));

  CUDA_CHECK(hipMemsetAsync(d_missing_count_, 0, sizeof(*d_missing_count_), query_stream_));

  CUDA_CHECK(hipMemcpyAsync(h_output_host_indices_, d_output_host_indices_,
                             sizeof(index_type) * num_missing_keys, hipMemcpyDeviceToHost,
                             query_stream_));

  CUDA_CHECK(hipMemcpyAsync(h_missing_keys_, d_missing_keys_, sizeof(key_type) * num_missing_keys,
                             hipMemcpyDeviceToHost, cpy_streams_[0]));

 hipLaunchKernelGGL(( read_vectors_kernel), dim3((num_keys - 1) / block_size + 1), dim3(block_size), 0, cpy_streams_[1], 
      d_output_indices_, num_keys, d_vectors_, vec_size_, d_vectors);

  CUDA_CHECK(hipStreamSynchronize(query_stream_));
  CUDA_CHECK(hipStreamSynchronize(cpy_streams_[0]));

  int num_keys_per_buffer = ceil(1.0 * num_missing_keys / num_buffers_);

  for (int buffer_num = 0; buffer_num < num_buffers_; buffer_num++) {
    int num_keys_this_buffer = buffer_num != num_buffers_ - 1
                                   ? num_keys_per_buffer
                                   : num_missing_keys - num_keys_per_buffer * buffer_num;
    if (!num_keys_this_buffer) break;
#pragma omp parallel for num_threads(8)
    for (size_t i = 0; i < static_cast<size_t>(num_keys_this_buffer); i++) {
      size_t idx_key = buffer_num * num_keys_per_buffer + i;
      index_type index = h_output_host_indices_[idx_key];
      if (index == std::numeric_limits<index_type>::max()) {
        key_type key = h_missing_keys_[idx_key];
        auto iterator = h_final_missing_items_.find(key);
        if (iterator != h_final_missing_items_.end()) {
          index = iterator->second;
        }
      }
      if (index != std::numeric_limits<index_type>::max()) {
        memcpy(h_cpy_buffers_[buffer_num] + i * vec_size_, h_vectors_.data() + index * vec_size_,
               sizeof(vec_type) * vec_size_);
      } else {
        memcpy(h_cpy_buffers_[buffer_num] + i * vec_size_, default_vector_.data(),
               sizeof(vec_type) * vec_size_);
      }
    }
    CUDA_CHECK(hipMemcpyAsync(d_cpy_buffers_[buffer_num], h_cpy_buffers_[buffer_num],
                               sizeof(vec_type) * num_keys_this_buffer * vec_size_,
                               hipMemcpyHostToDevice, cpy_streams_[buffer_num]));

   hipLaunchKernelGGL(( distribute_vectors_kernel), dim3((num_keys_this_buffer - 1) / block_size + 1), dim3(block_size), 0,
                                cpy_streams_[buffer_num], 
        d_missing_positions_ + buffer_num * num_keys_per_buffer, num_keys_this_buffer,
        d_cpy_buffers_[buffer_num], vec_size_, d_vectors);
  }

  for (int i = 0; i < num_buffers_; i++) {
    CUDA_CHECK(hipEventRecord(cpy_events_[i], cpy_streams_[i]));
    CUDA_CHECK(hipStreamWaitEvent(stream, cpy_events_[i]));
  }
}

template <typename key_type, typename index_type, typename vec_type>
void UvmTable<key_type, index_type, vec_type>::clear(hipStream_t stream) {
  device_table_.clear(stream);
  host_table_.clear(stream);
}

template <typename key_type, typename index_type, typename vec_type>
UvmTable<key_type, index_type, vec_type>::~UvmTable() {
  CUDA_CHECK(hipFree(d_keys_buffer_));
  CUDA_CHECK(hipFree(d_vectors_buffer_));
  CUDA_CHECK(hipFree(d_vectors_));

  CUDA_CHECK(hipFree(d_output_indices_));
  CUDA_CHECK(hipFree(d_output_host_indices_));
  CUDA_CHECK(hipHostFree(h_output_host_indices_));

  CUDA_CHECK(hipFree(d_missing_keys_));
  CUDA_CHECK(hipFree(d_missing_positions_));
  CUDA_CHECK(hipFree(d_missing_count_));
  CUDA_CHECK(hipHostFree(h_missing_keys_));

  CUDA_CHECK(hipStreamDestroy(query_stream_));
  CUDA_CHECK(hipEventDestroy(query_event_));

  for (int i = 0; i < num_buffers_; i++) {
    CUDA_CHECK(hipHostFree(h_cpy_buffers_[i]));
    CUDA_CHECK(hipFree(d_cpy_buffers_[i]));
    CUDA_CHECK(hipStreamDestroy(cpy_streams_[i]));
    CUDA_CHECK(hipEventDestroy(cpy_events_[i]));
  }
}

template <typename key_type, typename index_type>
HashBlock<key_type, index_type>::HashBlock(size_t expected_capacity, int set_size, int batch_size)
    : max_set_size_(set_size), batch_size_(batch_size) {
  if (expected_capacity) {
    num_sets = (expected_capacity - 1) / set_size + 1;
  } else {
    num_sets = 10000;
  }
  capacity = num_sets * set_size;
  CUDA_CHECK(hipMalloc(&keys, sizeof(*keys) * capacity));
  CUDA_CHECK(hipMalloc(&set_sizes_, sizeof(*set_sizes_) * num_sets));
  CUDA_CHECK(hipMemset(set_sizes_, 0, sizeof(*set_sizes_) * num_sets));
}

template <typename key_type, typename index_type>
HashBlock<key_type, index_type>::~HashBlock() {
  CUDA_CHECK(hipFree(keys));
  CUDA_CHECK(hipFree(set_sizes_));
}

template <typename key_type, typename index_type>
void HashBlock<key_type, index_type>::query(const key_type* query_keys, const size_t num_keys,
                                            index_type* output_indices, key_type* missing_keys,
                                            int* missing_positions, int* num_missing_keys,
                                            hipStream_t stream) {
  if (num_keys == 0) {
    return;
  }
  size_t num_batches = (num_keys - 1) / batch_size_ + 1;
  for (size_t i = 0; i < num_batches; i++) {
    size_t this_batch_size = i != num_batches - 1 ? batch_size_ : num_keys - i * batch_size_;
   hipLaunchKernelGGL(( hash_query_kernel), dim3((this_batch_size - 1) / block_size + 1), dim3(block_size), 0, stream, 
        query_keys, this_batch_size, keys, num_sets, max_set_size_, output_indices, missing_keys,
        missing_positions, num_missing_keys);
  }
}

template <typename key_type, typename index_type>
void HashBlock<key_type, index_type>::query(const key_type* query_keys, int* num_keys,
                                            index_type* output_indices, hipStream_t stream) {
 hipLaunchKernelGGL(( hash_query_kernel), dim3(128), dim3(64), 0, stream, query_keys, num_keys, keys, num_sets, max_set_size_,
                                            output_indices);
}

template <typename key_type, typename index_type>
void HashBlock<key_type, index_type>::add(const key_type* new_keys, const size_t num_keys,
                                          key_type* missing_keys, int* num_missing_keys,
                                          hipStream_t stream) {
  if (num_keys == 0) {
    return;
  }
  size_t num_batches = (num_keys - 1) / batch_size_ + 1;
  for (size_t i = 0; i < num_batches; i++) {
    size_t this_batch_size = i != num_batches - 1 ? batch_size_ : num_keys - i * batch_size_;
   hipLaunchKernelGGL(( hash_add_kernel), dim3((this_batch_size - 1) / block_size + 1), dim3(block_size), 0, stream, 
        new_keys + i * this_batch_size, this_batch_size, keys, num_sets, set_sizes_, max_set_size_,
        missing_keys, num_missing_keys);
  }
}

template <typename key_type, typename index_type>
void HashBlock<key_type, index_type>::clear(hipStream_t stream) {
  CUDA_CHECK(hipMemsetAsync(set_sizes_, 0, sizeof(*set_sizes_) * num_sets, stream));
}

template class HashBlock<int, size_t>;
template class HashBlock<int64_t, size_t>;
template class HashBlock<size_t, size_t>;
template class HashBlock<unsigned int, size_t>;
template class HashBlock<long long, size_t>;

template class UvmTable<int, size_t>;
template class UvmTable<int64_t, size_t>;
template class UvmTable<size_t, size_t>;
template class UvmTable<unsigned int, size_t>;
template class UvmTable<long long, size_t>;
608
}  // namespace gpu_cache