"vscode:/vscode.git/clone" did not exist on "5008fd4e5a6a08636327a2ff25f48102c04850b9"
ndarray.cc 18 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
/*!
2
 *  Copyright (c) 2017-2022 by Contributors
Minjie Wang's avatar
Minjie Wang committed
3
4
5
 * \file ndarray.cc
 * \brief NDArray container infratructure.
 */
6
#include <string.h>
Minjie Wang's avatar
Minjie Wang committed
7
8
9
10
#include <dmlc/logging.h>
#include <dgl/runtime/ndarray.h>
#include <dgl/runtime/c_runtime_api.h>
#include <dgl/runtime/device_api.h>
11
12
#include <dgl/runtime/shared_mem.h>
#include <dgl/zerocopy_serializer.h>
13
#include <dgl/runtime/tensordispatch.h>
Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
#include "runtime_base.h"

// deleter for arrays used by DLPack exporter
extern "C" void NDArrayDLPackDeleter(DLManagedTensor* tensor);

19
namespace dgl {
20

21
22
constexpr DLDataType DLDataTypeTraits<int8_t>::dtype;
constexpr DLDataType DLDataTypeTraits<int16_t>::dtype;
23
24
25
26
constexpr DLDataType DLDataTypeTraits<int32_t>::dtype;
constexpr DLDataType DLDataTypeTraits<int64_t>::dtype;
constexpr DLDataType DLDataTypeTraits<uint32_t>::dtype;
constexpr DLDataType DLDataTypeTraits<uint64_t>::dtype;
27
28
29
#ifdef USE_FP16
constexpr DLDataType DLDataTypeTraits<__half>::dtype;
#endif
30
31
32
constexpr DLDataType DLDataTypeTraits<float>::dtype;
constexpr DLDataType DLDataTypeTraits<double>::dtype;

Minjie Wang's avatar
Minjie Wang committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
namespace runtime {

inline void VerifyDataType(DLDataType dtype) {
  CHECK_GE(dtype.lanes, 1);
  if (dtype.code == kDLFloat) {
    CHECK_EQ(dtype.bits % 8, 0);
  } else {
    CHECK_EQ(dtype.bits % 8, 0);
  }
  CHECK_EQ(dtype.bits & (dtype.bits - 1), 0);
}

inline size_t GetDataSize(const DLTensor& arr) {
  size_t size = 1;
47
  for (dgl_index_t i = 0; i < arr.ndim; ++i) {
Minjie Wang's avatar
Minjie Wang committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    size *= arr.shape[i];
  }
  size *= (arr.dtype.bits * arr.dtype.lanes + 7) / 8;
  return size;
}

inline size_t GetDataAlignment(const DLTensor& arr) {
  size_t align = (arr.dtype.bits / 8) * arr.dtype.lanes;
  if (align < kAllocAlignment) return kAllocAlignment;
  return align;
}

struct NDArray::Internal {
  // Default deleter for the container
  static void DefaultDeleter(NDArray::Container* ptr) {
63
    using dgl::runtime::NDArray;
Minjie Wang's avatar
Minjie Wang committed
64
65
    if (ptr->manager_ctx != nullptr) {
      static_cast<NDArray::Container*>(ptr->manager_ctx)->DecRef();
66
67
    } else if (ptr->mem) {
      ptr->mem = nullptr;
Minjie Wang's avatar
Minjie Wang committed
68
    } else if (ptr->dl_tensor.data != nullptr) {
69
      // if the array is still pinned before freeing, unpin it.
70
71
      if (ptr->pinned_by_dgl_)
        UnpinContainer(ptr);
72
      dgl::runtime::DeviceAPI::Get(ptr->dl_tensor.ctx)->FreeDataSpace(
Minjie Wang's avatar
Minjie Wang committed
73
74
75
76
77
78
          ptr->dl_tensor.ctx, ptr->dl_tensor.data);
    }
    delete ptr;
  }
  // Deleter for NDArray converted from DLPack
  // This is used from data which is passed from external DLPack(DLManagedTensor)
79
  // that are not allocated inside of DGL.
Minjie Wang's avatar
Minjie Wang committed
80
81
82
  // This enables us to create NDArray from memory allocated by other
  // frameworks that are DLPack compatible
  static void DLPackDeleter(NDArray::Container* ptr) {
83
84
85
    // if the array is pinned by dgl, unpin it before freeing
    if (ptr->pinned_by_dgl_)
      UnpinContainer(ptr);
Minjie Wang's avatar
Minjie Wang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    DLManagedTensor* tensor = static_cast<DLManagedTensor*>(ptr->manager_ctx);
    if (tensor->deleter != nullptr) {
      (*tensor->deleter)(tensor);
    }
    delete ptr;
  }
  // Local create function which allocates tensor metadata
  // but does not allocate space for the data.
  static NDArray Create(std::vector<int64_t> shape,
                        DLDataType dtype,
                        DLContext ctx) {
    VerifyDataType(dtype);
    // critical zone
    NDArray::Container* data = new NDArray::Container();
    data->deleter = DefaultDeleter;
    NDArray ret(data);
    ret.data_ = data;
    // RAII now in effect
    // setup shape
    data->shape_ = std::move(shape);
    data->dl_tensor.shape = dmlc::BeginPtr(data->shape_);
    data->dl_tensor.ndim = static_cast<int>(data->shape_.size());
108
109
110
111
112
113
114
    // setup stride (this should be optional, but some framework
    //   does not support NULL stride and thus will crash the program).
    data->stride_.resize(data->dl_tensor.ndim, 1);
    for (int i = data->dl_tensor.ndim - 2; i >= 0; --i) {
      data->stride_[i] = data->shape_[i+1] * data->stride_[i+1];
    }
    data->dl_tensor.strides = dmlc::BeginPtr(data->stride_);
Minjie Wang's avatar
Minjie Wang committed
115
116
117
118
119
120
121
122
    // setup dtype
    data->dl_tensor.dtype = dtype;
    // setup ctx
    data->dl_tensor.ctx = ctx;
    return ret;
  }
  // Implementation of API function
  static DLTensor* MoveAsDLTensor(NDArray arr) {
123
124
    DLTensor* tensor = reinterpret_cast<DLTensor*>(arr.data_);
    CHECK(tensor == const_cast<DLTensor*>(arr.operator->()));
Minjie Wang's avatar
Minjie Wang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    arr.data_ = nullptr;
    return tensor;
  }
  // Container to DLManagedTensor
  static DLManagedTensor* ToDLPack(NDArray::Container* from) {
    CHECK(from != nullptr);
    DLManagedTensor* ret = new DLManagedTensor();
    ret->dl_tensor = from->dl_tensor;
    ret->manager_ctx = from;
    from->IncRef();
    ret->deleter = NDArrayDLPackDeleter;
    return ret;
  }
};

140
141
142
143
size_t NDArray::GetSize() const {
  return GetDataSize(data_->dl_tensor);
}

144
int64_t NDArray::NumElements() const {
145
146
  if (data_->dl_tensor.ndim == 0)
    return 0;
147
148
149
150
151
152
153
  int64_t size = 1;
  for (int i = 0; i < data_->dl_tensor.ndim; ++i) {
    size *= data_->dl_tensor.shape[i];
  }
  return size;
}

154
155
156
157
bool NDArray::IsContiguous() const {
  CHECK(data_ != nullptr);
  if (data_->dl_tensor.strides == nullptr)
    return true;
158
159
160
161
162
163
164
165
166
167

  // See https://github.com/dmlc/dgl/issues/2118 and PyTorch's compute_contiguous() implementation
  int64_t z = 1;
  for (int64_t i = data_->dl_tensor.ndim - 1; i >= 0; --i) {
    if (data_->dl_tensor.shape[i] != 1) {
      if (data_->dl_tensor.strides[i] == z)
        z *= data_->dl_tensor.shape[i];
      else
        return false;
    }
168
  }
169
  return true;
170
171
}

Minjie Wang's avatar
Minjie Wang committed
172
NDArray NDArray::CreateView(std::vector<int64_t> shape,
173
174
                            DLDataType dtype,
                            int64_t offset) {
Minjie Wang's avatar
Minjie Wang committed
175
  CHECK(data_ != nullptr);
176
  CHECK(IsContiguous()) << "Can only create view for compact tensor";
Minjie Wang's avatar
Minjie Wang committed
177
178
179
180
181
182
183
184
185
186
  NDArray ret = Internal::Create(shape, dtype, data_->dl_tensor.ctx);
  ret.data_->dl_tensor.byte_offset =
      this->data_->dl_tensor.byte_offset;
  size_t curr_size = GetDataSize(this->data_->dl_tensor);
  size_t view_size = GetDataSize(ret.data_->dl_tensor);
  CHECK_LE(view_size, curr_size)
      << "Tries to create a view that has bigger memory than current one";
  // increase ref count
  this->data_->IncRef();
  ret.data_->manager_ctx = this->data_;
187
188
  ret.data_->dl_tensor.data =
    static_cast<char*>(this->data_->dl_tensor.data) + offset;
Minjie Wang's avatar
Minjie Wang committed
189
190
191
192
193
194
195
  return ret;
}

DLManagedTensor* NDArray::ToDLPack() const {
  return Internal::ToDLPack(data_);
}

196
197
198
199
200
201
202
203
204
NDArray NDArray::EmptyShared(const std::string &name,
                       std::vector<int64_t> shape,
                       DLDataType dtype,
                       DLContext ctx, bool is_create) {
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  auto mem = std::make_shared<SharedMemory>(name);
  if (is_create) {
205
    ret.data_->dl_tensor.data = mem->CreateNew(size);
206
  } else {
207
    ret.data_->dl_tensor.data = mem->Open(size);
208
209
210
211
212
213
  }

  ret.data_->mem = mem;
  return ret;
}

Minjie Wang's avatar
Minjie Wang committed
214
NDArray NDArray::Empty(std::vector<int64_t> shape,
215
216
                       DLDataType dtype,
                       DLContext ctx) {
217
  NDArray ret = Internal::Create(shape, dtype, ctx);
Minjie Wang's avatar
Minjie Wang committed
218
219
220
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
221
222
223
224
  if (size > 0)
    ret.data_->dl_tensor.data =
        DeviceAPI::Get(ret->ctx)->AllocDataSpace(
            ret->ctx, size, alignment, ret->dtype);
Minjie Wang's avatar
Minjie Wang committed
225
226
227
228
229
230
231
232
  return ret;
}

NDArray NDArray::FromDLPack(DLManagedTensor* tensor) {
  NDArray::Container* data = new NDArray::Container();
  data->deleter = Internal::DLPackDeleter;
  data->manager_ctx = tensor;
  data->dl_tensor = tensor->dl_tensor;
233

Minjie Wang's avatar
Minjie Wang committed
234
235
236
237
  return NDArray(data);
}

void NDArray::CopyFromTo(DLTensor* from,
238
                         DLTensor* to) {
Minjie Wang's avatar
Minjie Wang committed
239
240
241
  size_t from_size = GetDataSize(*from);
  size_t to_size = GetDataSize(*to);
  CHECK_EQ(from_size, to_size)
242
    << "DGLArrayCopyFromTo: The size must exactly match";
Minjie Wang's avatar
Minjie Wang committed
243
244
245
246
247
248
249
250

  CHECK(from->ctx.device_type == to->ctx.device_type
        || from->ctx.device_type == kDLCPU
        || to->ctx.device_type == kDLCPU)
    << "Can not copy across different ctx types directly";

  // Use the context that is *not* a cpu context to get the correct device
  // api manager.
251
  DGLContext ctx = from->ctx.device_type != kDLCPU ? from->ctx : to->ctx;
Minjie Wang's avatar
Minjie Wang committed
252

253
  // default: local cuda stream: CUDAThreadEntry->ThreadLocal()->stream
Minjie Wang's avatar
Minjie Wang committed
254
  DeviceAPI::Get(ctx)->CopyDataFromTo(
255
256
257
      from->data, static_cast<size_t>(from->byte_offset),
      to->data, static_cast<size_t>(to->byte_offset),
      from_size, from->ctx, to->ctx, from->dtype);
Minjie Wang's avatar
Minjie Wang committed
258
259
}

260
261
262
void NDArray::PinContainer(NDArray::Container* ptr) {
  if (IsContainerPinned(ptr)) return;
  auto* tensor = &(ptr->dl_tensor);
263
264
265
  CHECK_EQ(tensor->ctx.device_type, kDLCPU)
    << "Only NDArray on CPU can be pinned";
  DeviceAPI::Get(kDLGPU)->PinData(tensor->data, GetDataSize(*tensor));
266
  ptr->pinned_by_dgl_ = true;
267
268
}

269
270
271
272
273
274
275
276
277
278
279
void NDArray::UnpinContainer(NDArray::Container* ptr) {
  auto container_is_pinned = IsContainerPinned(ptr);
  // The tensor may be pinned outside of DGL via a different CUDA API,
  // so we cannot unpin it with cudaHostUnregister.
  CHECK(ptr->pinned_by_dgl_ || !container_is_pinned)
    << "Cannot unpin a tensor that is pinned outside of DGL.";
  // 1. not pinned, do nothing
  if (!container_is_pinned) return;
  // 2. pinned by DGL, unpin it
  DeviceAPI::Get(kDLGPU)->UnpinData(ptr->dl_tensor.data);
  ptr->pinned_by_dgl_ = false;
280
281
}

282
template<typename T>
283
284
NDArray NDArray::FromVector(const std::vector<T>& vec, DLContext ctx) {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
285
  int64_t size = static_cast<int64_t>(vec.size());
286
  NDArray ret = NDArray::Empty({size}, dtype, ctx);
287
288
289
290
291
292
293
294
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      vec.data(),
      0,
      static_cast<T*>(ret->data),
      0,
      size * sizeof(T),
      DLContext{kDLCPU, 0},
      ctx,
295
      dtype);
296
297
298
299
  return ret;
}

// export specializations
300
301
302
303
304
305
template NDArray NDArray::FromVector<int32_t>(const std::vector<int32_t>&, DLContext);
template NDArray NDArray::FromVector<int64_t>(const std::vector<int64_t>&, DLContext);
template NDArray NDArray::FromVector<uint32_t>(const std::vector<uint32_t>&, DLContext);
template NDArray NDArray::FromVector<uint64_t>(const std::vector<uint64_t>&, DLContext);
template NDArray NDArray::FromVector<float>(const std::vector<float>&, DLContext);
template NDArray NDArray::FromVector<double>(const std::vector<double>&, DLContext);
306

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
template<typename T>
std::vector<T> NDArray::ToVector() const {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
  CHECK(data_->dl_tensor.ndim == 1) << "ToVector() only supported for 1D arrays";
  CHECK(data_->dl_tensor.dtype == dtype) << "dtype mismatch";

  int64_t size = data_->dl_tensor.shape[0];
  std::vector<T> vec(size);
  const DLContext &ctx = data_->dl_tensor.ctx;
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      static_cast<T*>(data_->dl_tensor.data),
      0,
      vec.data(),
      0,
      size * sizeof(T),
      ctx,
      DLContext{kDLCPU, 0},
324
      dtype);
325
326
327
328
329
330
331
332
333
  return vec;
}

template std::vector<int32_t> NDArray::ToVector<int32_t>() const;
template std::vector<int64_t> NDArray::ToVector<int64_t>() const;
template std::vector<uint32_t> NDArray::ToVector<uint32_t>() const;
template std::vector<uint64_t> NDArray::ToVector<uint64_t>() const;
template std::vector<float> NDArray::ToVector<float>() const;
template std::vector<double> NDArray::ToVector<double>() const;
334

335
336
337
338
std::shared_ptr<SharedMemory> NDArray::GetSharedMem() const {
  return this->data_->mem;
}

339
340
341
342
bool NDArray::IsContainerPinned(NDArray::Container* ptr) {
  if (ptr->pinned_by_dgl_)
    return true;
  auto* tensor = &(ptr->dl_tensor);
343
344
345
346
347
348
349
  // Can only be pinned if on CPU...
  if (tensor->ctx.device_type != kDLCPU)
    return false;
  // ... and CUDA device API is enabled, and the tensor is indeed in pinned memory.
  auto device = DeviceAPI::Get(kDLGPU, true);
  return device && device->IsPinned(tensor->data);
}
350
351

void NDArray::Save(dmlc::Stream* strm) const {
352
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
353
354
355
356
357
358
359
360
  if (zc_strm) {
    zc_strm->PushNDArray(*this);
    return;
  }
  SaveDLTensor(strm, const_cast<DLTensor*>(operator->()));
}

bool NDArray::Load(dmlc::Stream* strm) {
361
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  if (zc_strm) {
    *this = zc_strm->PopNDArray();
    return true;
  }
  uint64_t header, reserved;
  CHECK(strm->Read(&header))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&reserved))
      << "Invalid DLTensor file format";
  CHECK(header == kDGLNDArrayMagic)
      << "Invalid DLTensor file format";
  DLContext ctx;
  int ndim;
  DLDataType dtype;
  CHECK(strm->Read(&ctx))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&ndim))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&dtype))
      << "Invalid DLTensor file format";
  CHECK_EQ(ctx.device_type, kDLCPU)
      << "Invalid DLTensor context: can only save as CPU tensor";
  std::vector<int64_t> shape(ndim);
  if (ndim != 0) {
    CHECK(strm->ReadArray(&shape[0], ndim))
        << "Invalid DLTensor file format";
  }
  NDArray ret = NDArray::Empty(shape, dtype, ctx);
  int64_t num_elems = 1;
  int elem_bytes = (ret->dtype.bits + 7) / 8;
  for (int i = 0; i < ret->ndim; ++i) {
    num_elems *= ret->shape[i];
  }
  int64_t data_byte_size;
  CHECK(strm->Read(&data_byte_size))
      << "Invalid DLTensor file format";
  CHECK(data_byte_size == num_elems * elem_bytes)
      << "Invalid DLTensor file format";
  if (data_byte_size != 0)  {
    // strm->Read will return the total number of elements successfully read.
    // Therefore if data_byte_size is zero, the CHECK below would fail.
    CHECK(strm->Read(ret->data, data_byte_size))
        << "Invalid DLTensor file format";
  }
  if (!DMLC_IO_NO_ENDIAN_SWAP) {
    dmlc::ByteSwap(ret->data, elem_bytes, num_elems);
  }
  *this = ret;
  return true;
}


Minjie Wang's avatar
Minjie Wang committed
414
}  // namespace runtime
415
}  // namespace dgl
Minjie Wang's avatar
Minjie Wang committed
416

417
using namespace dgl::runtime;
Minjie Wang's avatar
Minjie Wang committed
418
419
420
421
422
423

void NDArrayDLPackDeleter(DLManagedTensor* tensor) {
  static_cast<NDArray::Container*>(tensor->manager_ctx)->DecRef();
  delete tensor;
}

424
int DGLArrayAlloc(const dgl_index_t* shape,
Minjie Wang's avatar
Minjie Wang committed
425
426
427
428
429
430
                  int ndim,
                  int dtype_code,
                  int dtype_bits,
                  int dtype_lanes,
                  int device_type,
                  int device_id,
431
                  DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
432
433
434
435
436
437
438
439
440
441
442
443
444
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  DLContext ctx;
  ctx.device_type = static_cast<DLDeviceType>(device_type);
  ctx.device_id = device_id;
  *out = NDArray::Internal::MoveAsDLTensor(
      NDArray::Empty(std::vector<int64_t>(shape, shape + ndim), dtype, ctx));
  API_END();
}

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
int DGLArrayAllocSharedMem(const char *mem_name,
                           const dgl_index_t *shape,
                           int ndim,
                           int dtype_code,
                           int dtype_bits,
                           int dtype_lanes,
                           bool is_create,
                           DGLArrayHandle* out) {
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  std::vector<int64_t> shape_vec(shape, shape + ndim);
  NDArray arr = NDArray::EmptyShared(mem_name, shape_vec, dtype,
                                     DLContext{kDLCPU, 0}, is_create);
  *out = NDArray::Internal::MoveAsDLTensor(arr);
  API_END();
}

465
int DGLArrayFree(DGLArrayHandle handle) {
Minjie Wang's avatar
Minjie Wang committed
466
467
468
469
470
  API_BEGIN();
  reinterpret_cast<NDArray::Container*>(handle)->DecRef();
  API_END();
}

471
int DGLArrayCopyFromTo(DGLArrayHandle from,
472
                       DGLArrayHandle to) {
Minjie Wang's avatar
Minjie Wang committed
473
  API_BEGIN();
474
  NDArray::CopyFromTo(from, to);
Minjie Wang's avatar
Minjie Wang committed
475
476
477
  API_END();
}

478
479
int DGLArrayFromDLPack(DLManagedTensor* from,
                       DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
480
481
482
483
484
  API_BEGIN();
  *out = NDArray::Internal::MoveAsDLTensor(NDArray::FromDLPack(from));
  API_END();
}

485
486
487
488
489
490
491
inline bool is_aligned(const void* ptr, std::uintptr_t alignment) noexcept {
  auto iptr = reinterpret_cast<std::uintptr_t>(ptr);
  return !(iptr % alignment);
}

int DGLArrayToDLPack(DGLArrayHandle from, DLManagedTensor** out,
                     int alignment) {
Minjie Wang's avatar
Minjie Wang committed
492
  API_BEGIN();
493
494
  auto* nd_container = reinterpret_cast<NDArray::Container*>(from);
  DLTensor* nd = &(nd_container->dl_tensor);
495
  if (alignment != 0 && !is_aligned(nd->data, alignment)) {
496
    std::vector<int64_t> shape_vec(nd->shape, nd->shape + nd->ndim);
497
    NDArray copy_ndarray = NDArray::Empty(shape_vec, nd->dtype, nd->ctx);
498
499
500
501
502
    copy_ndarray.CopyFrom(nd);
    *out = copy_ndarray.ToDLPack();
  } else {
    *out = NDArray::Internal::ToDLPack(nd_container);
  }
Minjie Wang's avatar
Minjie Wang committed
503
504
505
  API_END();
}

506
void DGLDLManagedTensorCallDeleter(DLManagedTensor* dltensor) {
Minjie Wang's avatar
Minjie Wang committed
507
508
509
  (*(dltensor->deleter))(dltensor);
}

510
int DGLArrayCopyFromBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
511
512
513
                          void* data,
                          size_t nbytes) {
  API_BEGIN();
514
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
515
516
517
518
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
519
      << "DGLArrayCopyFromBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
520
521
522
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      data, 0,
      handle->data, static_cast<size_t>(handle->byte_offset),
523
      nbytes, cpu_ctx, handle->ctx, handle->dtype);
Minjie Wang's avatar
Minjie Wang committed
524
525
526
  API_END();
}

527
int DGLArrayCopyToBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
528
529
530
                        void* data,
                        size_t nbytes) {
  API_BEGIN();
531
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
532
533
534
535
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
536
      << "DGLArrayCopyToBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
537
538
539
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      handle->data, static_cast<size_t>(handle->byte_offset),
      data, 0,
540
      nbytes, handle->ctx, cpu_ctx, handle->dtype);
Minjie Wang's avatar
Minjie Wang committed
541
542
  API_END();
}
543
544
545
546

int DGLArrayPinData(DGLArrayHandle handle,
                    DLContext ctx) {
  API_BEGIN();
547
548
  auto* nd_container = reinterpret_cast<NDArray::Container*>(handle);
  NDArray::PinContainer(nd_container);
549
550
551
552
553
554
  API_END();
}

int DGLArrayUnpinData(DGLArrayHandle handle,
                      DLContext ctx) {
  API_BEGIN();
555
556
  auto* nd_container = reinterpret_cast<NDArray::Container*>(handle);
  NDArray::UnpinContainer(nd_container);
557
558
  API_END();
}