transform.py 37.3 KB
Newer Older
1
2
"""Module for graph transformation utilities."""

3
from collections.abc import Iterable, Mapping
4
from collections import defaultdict
5
6
import numpy as np
from scipy import sparse
7
from ._ffi.function import _init_api
8
from .graph import DGLGraph
9
10
from .heterograph import DGLHeteroGraph
from . import ndarray as nd
11
from . import backend as F
12
from .graph_index import from_coo
13
14
from .graph_index import _get_halo_subgraph_inner_node
from .graph_index import _get_halo_subgraph_inner_edge
15
from .graph import unbatch
Mufei Li's avatar
Mufei Li committed
16
from .convert import graph, bipartite
17
from . import utils
18
19
from .base import EID, NID
from . import ndarray as nd
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
__all__ = [
    'line_graph',
    'khop_adj',
    'khop_graph',
    'reverse',
    'to_simple_graph',
    'to_bidirected',
    'laplacian_lambda_max',
    'knn_graph',
    'segmented_knn_graph',
    'add_self_loop',
    'remove_self_loop',
    'metapath_reachable_graph',
    'compact_graphs',
36
    'to_block',
37
38
    'to_simple',
    'in_subgraph',
39
40
    'out_subgraph',
    'remove_edges']
41
42


43
44
45
46
47
48
49
50
51
52
def pairwise_squared_distance(x):
    """
    x : (n_samples, n_points, dims)
    return : (n_samples, n_points, n_points)
    """
    x2s = F.sum(x * x, -1, True)
    # assuming that __matmul__ is always implemented (true for PyTorch, MXNet and Chainer)
    return x2s + F.swapaxes(x2s, -1, -2) - 2 * x @ F.swapaxes(x, -1, -2)

#pylint: disable=invalid-name
53
def knn_graph(x, k):
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    """Transforms the given point set to a directed graph, whose coordinates
    are given as a matrix. The predecessors of each point are its k-nearest
    neighbors.

    If a 3D tensor is given instead, then each row would be transformed into
    a separate graph.  The graphs will be unioned.

    Parameters
    ----------
    x : Tensor
        The input tensor.

        If 2D, each row of ``x`` corresponds to a node.

        If 3D, a k-NN graph would be constructed for each row.  Then
        the graphs are unioned.
    k : int
        The number of neighbors

    Returns
    -------
    DGLGraph
        The graph.  The node IDs are in the same order as ``x``.
    """
    if F.ndim(x) == 2:
        x = F.unsqueeze(x, 0)
    n_samples, n_points, _ = F.shape(x)

    dist = pairwise_squared_distance(x)
    k_indices = F.argtopk(dist, k, 2, descending=False)
    dst = F.copy_to(k_indices, F.cpu())

    src = F.zeros_like(dst) + F.reshape(F.arange(0, n_points), (1, -1, 1))

    per_sample_offset = F.reshape(F.arange(0, n_samples) * n_points, (-1, 1, 1))
    dst += per_sample_offset
    src += per_sample_offset
    dst = F.reshape(dst, (-1,))
    src = F.reshape(src, (-1,))
    adj = sparse.csr_matrix((F.asnumpy(F.zeros_like(dst) + 1), (F.asnumpy(dst), F.asnumpy(src))))

    g = DGLGraph(adj, readonly=True)
    return g

#pylint: disable=invalid-name
99
def segmented_knn_graph(x, k, segs):
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    """Transforms the given point set to a directed graph, whose coordinates
    are given as a matrix.  The predecessors of each point are its k-nearest
    neighbors.

    The matrices are concatenated along the first axis, and are segmented by
    ``segs``.  Each block would be transformed into a separate graph.  The
    graphs will be unioned.

    Parameters
    ----------
    x : Tensor
        The input tensor.
    k : int
        The number of neighbors
    segs : iterable of int
        Number of points of each point set.
        Must sum up to the number of rows in ``x``.

    Returns
    -------
    DGLGraph
        The graph.  The node IDs are in the same order as ``x``.
    """
    n_total_points, _ = F.shape(x)
    offset = np.insert(np.cumsum(segs), 0, 0)

    h_list = F.split(x, segs, 0)
    dst = [
        F.argtopk(pairwise_squared_distance(h_g), k, 1, descending=False) +
        offset[i]
        for i, h_g in enumerate(h_list)]
    dst = F.cat(dst, 0)
    src = F.arange(0, n_total_points).unsqueeze(1).expand(n_total_points, k)

    dst = F.reshape(dst, (-1,))
    src = F.reshape(src, (-1,))
    adj = sparse.csr_matrix((F.asnumpy(F.zeros_like(dst) + 1), (F.asnumpy(dst), F.asnumpy(src))))

    g = DGLGraph(adj, readonly=True)
    return g

141
142
143
144
145
146
def line_graph(g, backtracking=True, shared=False):
    """Return the line graph of this graph.

    Parameters
    ----------
    g : dgl.DGLGraph
147
        The input graph.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    backtracking : bool, optional
        Whether the returned line graph is backtracking.
    shared : bool, optional
        Whether the returned line graph shares representations with `self`.

    Returns
    -------
    DGLGraph
        The line graph of this graph.
    """
    graph_data = g._graph.line_graph(backtracking)
    node_frame = g._edge_frame if shared else None
    return DGLGraph(graph_data, node_frame)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def khop_adj(g, k):
    """Return the matrix of :math:`A^k` where :math:`A` is the adjacency matrix of :math:`g`,
    where a row represents the destination and a column represents the source.

    Parameters
    ----------
    g : dgl.DGLGraph
        The input graph.
    k : int
        The :math:`k` in :math:`A^k`.

    Returns
    -------
    tensor
        The returned tensor, dtype is ``np.float32``.

    Examples
    --------

    >>> import dgl
    >>> g = dgl.DGLGraph()
    >>> g.add_nodes(5)
    >>> g.add_edges([0,1,2,3,4,0,1,2,3,4], [0,1,2,3,4,1,2,3,4,0])
    >>> dgl.khop_adj(g, 1)
    tensor([[1., 0., 0., 0., 1.],
            [1., 1., 0., 0., 0.],
            [0., 1., 1., 0., 0.],
            [0., 0., 1., 1., 0.],
            [0., 0., 0., 1., 1.]])
    >>> dgl.khop_adj(g, 3)
    tensor([[1., 0., 1., 3., 3.],
            [3., 1., 0., 1., 3.],
            [3., 3., 1., 0., 1.],
            [1., 3., 3., 1., 0.],
            [0., 1., 3., 3., 1.]])
    """
    adj_k = g.adjacency_matrix_scipy(return_edge_ids=False) ** k
199
    return F.tensor(adj_k.todense().astype(np.float32))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

def khop_graph(g, k):
    """Return the graph that includes all :math:`k`-hop neighbors of the given graph as edges.
    The adjacency matrix of the returned graph is :math:`A^k`
    (where :math:`A` is the adjacency matrix of :math:`g`).

    Parameters
    ----------
    g : dgl.DGLGraph
        The input graph.
    k : int
        The :math:`k` in `k`-hop graph.

    Returns
    -------
    dgl.DGLGraph
        The returned ``DGLGraph``.

    Examples
    --------

    >>> import dgl
    >>> g = dgl.DGLGraph()
    >>> g.add_nodes(5)
    >>> g.add_edges([0,1,2,3,4,0,1,2,3,4], [0,1,2,3,4,1,2,3,4,0])
    >>> dgl.khop_graph(g, 1)
    DGLGraph(num_nodes=5, num_edges=10,
             ndata_schemes={}
             edata_schemes={})
    >>> dgl.khop_graph(g, 3)
    DGLGraph(num_nodes=5, num_edges=40,
             ndata_schemes={}
             edata_schemes={})
    """
    n = g.number_of_nodes()
    adj_k = g.adjacency_matrix_scipy(return_edge_ids=False) ** k
    adj_k = adj_k.tocoo()
    multiplicity = adj_k.data
    row = np.repeat(adj_k.row, multiplicity)
    col = np.repeat(adj_k.col, multiplicity)
    # TODO(zihao): we should support creating multi-graph from scipy sparse matrix
    # in the future.
    return DGLGraph(from_coo(n, row, col, True, True))

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def reverse(g, share_ndata=False, share_edata=False):
    """Return the reverse of a graph

    The reverse (also called converse, transpose) of a directed graph is another directed
    graph on the same nodes with edges reversed in terms of direction.

    Given a :class:`DGLGraph` object, we return another :class:`DGLGraph` object
    representing its reverse.

    Notes
    -----
    * We do not dynamically update the topology of a graph once that of its reverse changes.
      This can be particularly problematic when the node/edge attrs are shared. For example,
      if the topology of both the original graph and its reverse get changed independently,
      you can get a mismatched node/edge feature.

    Parameters
    ----------
    g : dgl.DGLGraph
263
        The input graph.
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    share_ndata: bool, optional
        If True, the original graph and the reversed graph share memory for node attributes.
        Otherwise the reversed graph will not be initialized with node attributes.
    share_edata: bool, optional
        If True, the original graph and the reversed graph share memory for edge attributes.
        Otherwise the reversed graph will not have edge attributes.

    Examples
    --------
    Create a graph to reverse.

    >>> import dgl
    >>> import torch as th
    >>> g = dgl.DGLGraph()
    >>> g.add_nodes(3)
    >>> g.add_edges([0, 1, 2], [1, 2, 0])
    >>> g.ndata['h'] = th.tensor([[0.], [1.], [2.]])
    >>> g.edata['h'] = th.tensor([[3.], [4.], [5.]])

    Reverse the graph and examine its structure.

    >>> rg = g.reverse(share_ndata=True, share_edata=True)
    >>> print(rg)
    DGLGraph with 3 nodes and 3 edges.
    Node data: {'h': Scheme(shape=(1,), dtype=torch.float32)}
    Edge data: {'h': Scheme(shape=(1,), dtype=torch.float32)}

    The edges are reversed now.

    >>> rg.has_edges_between([1, 2, 0], [0, 1, 2])
    tensor([1, 1, 1])

    Reversed edges have the same feature as the original ones.

    >>> g.edges[[0, 2], [1, 0]].data['h'] == rg.edges[[1, 0], [0, 2]].data['h']
    tensor([[1],
            [1]], dtype=torch.uint8)

    The node/edge features of the reversed graph share memory with the original
    graph, which is helpful for both forward computation and back propagation.

    >>> g.ndata['h'] = g.ndata['h'] + 1
    >>> rg.ndata['h']
    tensor([[1.],
            [2.],
            [3.]])
    """
    g_reversed = DGLGraph(multigraph=g.is_multigraph)
    g_reversed.add_nodes(g.number_of_nodes())
Mufei Li's avatar
Mufei Li committed
313
    g_edges = g.all_edges(order='eid')
314
    g_reversed.add_edges(g_edges[1], g_edges[0])
315
316
    g_reversed._batch_num_nodes = g._batch_num_nodes
    g_reversed._batch_num_edges = g._batch_num_edges
317
318
319
320
321
    if share_ndata:
        g_reversed._node_frame = g._node_frame
    if share_edata:
        g_reversed._edge_frame = g._edge_frame
    return g_reversed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

def to_simple_graph(g):
    """Convert the graph to a simple graph with no multi-edge.

    The function generates a new *readonly* graph with no node/edge feature.

    Parameters
    ----------
    g : DGLGraph
        The input graph.

    Returns
    -------
    DGLGraph
        A simple graph.
    """
338
339
    gidx = _CAPI_DGLToSimpleGraph(g._graph)
    return DGLGraph(gidx, readonly=True)
340

341
342
343
344
def to_bidirected(g, readonly=True):
    """Convert the graph to a bidirected graph.

    The function generates a new graph with no node/edge feature.
345
346
347
348
349
    If g has an edge for i->j but no edge for j->i, then the
    returned graph will have both i->j and j->i.

    If the input graph is a multigraph (there are multiple edges from node i to node j),
    the returned graph isn't well defined.
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    Parameters
    ----------
    g : DGLGraph
        The input graph.
    readonly : bool, default to be True
        Whether the returned bidirected graph is readonly or not.

    Returns
    -------
    DGLGraph

    Examples
    --------
    The following two examples use PyTorch backend, one for non-multi graph
    and one for multi-graph.

    >>> g = dgl.DGLGraph()
    >>> g.add_nodes(2)
    >>> g.add_edges([0, 0], [0, 1])
    >>> bg1 = dgl.to_bidirected(g)
    >>> bg1.edges()
    (tensor([0, 1, 0]), tensor([0, 0, 1]))
    """
    if readonly:
375
        newgidx = _CAPI_DGLToBidirectedImmutableGraph(g._graph)
376
    else:
377
        newgidx = _CAPI_DGLToBidirectedMutableGraph(g._graph)
378
379
    return DGLGraph(newgidx)

380
381
382
383
384
385
386
387
def laplacian_lambda_max(g):
    """Return the largest eigenvalue of the normalized symmetric laplacian of g.

    The eigenvalue of the normalized symmetric of any graph is less than or equal to 2,
    ref: https://en.wikipedia.org/wiki/Laplacian_matrix#Properties

    Parameters
    ----------
388
    g : DGLGraph
389
390
391
392
393
        The input graph, it should be an undirected graph.

    Returns
    -------
    list :
394
395
        Return a list, where the i-th item indicates the largest eigenvalue
        of i-th graph in g.
396
397
398
399
400
401
402
403
404
405
406

    Examples
    --------

    >>> import dgl
    >>> g = dgl.DGLGraph()
    >>> g.add_nodes(5)
    >>> g.add_edges([0, 1, 2, 3, 4, 0, 1, 2, 3, 4], [1, 2, 3, 4, 0, 4, 0, 1, 2, 3])
    >>> dgl.laplacian_lambda_max(g)
    [1.809016994374948]
    """
407
    g_arr = unbatch(g)
408
409
410
411
    rst = []
    for g_i in g_arr:
        n = g_i.number_of_nodes()
        adj = g_i.adjacency_matrix_scipy(return_edge_ids=False).astype(float)
412
        norm = sparse.diags(F.asnumpy(g_i.in_degrees()).clip(1) ** -0.5, dtype=float)
413
414
415
416
417
        laplacian = sparse.eye(n) - norm * adj * norm
        rst.append(sparse.linalg.eigs(laplacian, 1, which='LM',
                                      return_eigenvectors=False)[0].real)
    return rst

Mufei Li's avatar
Mufei Li committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def metapath_reachable_graph(g, metapath):
    """Return a graph where the successors of any node ``u`` are nodes reachable from ``u`` by
    the given metapath.

    If the beginning node type ``s`` and ending node type ``t`` are the same, it will return
    a homogeneous graph with node type ``s = t``.  Otherwise, a unidirectional bipartite graph
    with source node type ``s`` and destination node type ``t`` is returned.

    In both cases, two nodes ``u`` and ``v`` will be connected with an edge ``(u, v)`` if
    there exists one path matching the metapath from ``u`` to ``v``.

    The result graph keeps the node set of type ``s`` and ``t`` in the original graph even if
    they might have no neighbor.

    The features of the source/destination node type in the original graph would be copied to
    the new graph.

    Parameters
    ----------
    g : DGLHeteroGraph
        The input graph
    metapath : list[str or tuple of str]
        Metapath in the form of a list of edge types

    Returns
    -------
    DGLHeteroGraph
        A homogeneous or bipartite graph.
    """
    adj = 1
    for etype in metapath:
        adj = adj * g.adj(etype=etype, scipy_fmt='csr', transpose=True)

    adj = (adj != 0).tocsr()
    srctype = g.to_canonical_etype(metapath[0])[0]
    dsttype = g.to_canonical_etype(metapath[-1])[2]
    if srctype == dsttype:
        assert adj.shape[0] == adj.shape[1]
        new_g = graph(adj, ntype=srctype)
    else:
        new_g = bipartite(adj, utype=srctype, vtype=dsttype)

    for key, value in g.nodes[srctype].data.items():
        new_g.nodes[srctype].data[key] = value
    if srctype != dsttype:
        for key, value in g.nodes[dsttype].data.items():
            new_g.nodes[dsttype].data[key] = value

    return new_g
467

VoVAllen's avatar
VoVAllen committed
468
469
470
471
def add_self_loop(g):
    """Return a new graph containing all the edges in the input graph plus self loops
    of every nodes.
    No duplicate self loop will be added for nodes already having self loops.
472
473
474
475
476
477
478
479
    Self-loop edges id are not preserved. All self-loop edges would be added at the end.

    Examples
    ---------

    >>> g = DGLGraph()
    >>> g.add_nodes(5)
    >>> g.add_edges([0, 1, 2], [1, 1, 2])
VoVAllen's avatar
VoVAllen committed
480
    >>> new_g = dgl.transform.add_self_loop(g) # Nodes 0, 3, 4 don't have self-loop
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    >>> new_g.edges()
    (tensor([0, 0, 1, 2, 3, 4]), tensor([1, 0, 1, 2, 3, 4]))

    Parameters
    ------------
    g: DGLGraph

    Returns
    --------
    DGLGraph
    """
    new_g = DGLGraph()
    new_g.add_nodes(g.number_of_nodes())
    src, dst = g.all_edges(order="eid")
    src = F.zerocopy_to_numpy(src)
    dst = F.zerocopy_to_numpy(dst)
    non_self_edges_idx = src != dst
    nodes = np.arange(g.number_of_nodes())
    new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx])
    new_g.add_edges(nodes, nodes)
    return new_g

def remove_self_loop(g):
    """Return a new graph with all self-loop edges removed

    Examples
    ---------

    >>> g = DGLGraph()
    >>> g.add_nodes(5)
    >>> g.add_edges([0, 1, 2], [1, 1, 2])
    >>> new_g = dgl.transform.remove_self_loop(g) # Nodes 1, 2 have self-loop
    >>> new_g.edges()
    (tensor([0]), tensor([1]))

    Parameters
    ------------
    g: DGLGraph

    Returns
    --------
    DGLGraph
    """
    new_g = DGLGraph()
    new_g.add_nodes(g.number_of_nodes())
    src, dst = g.all_edges(order="eid")
    src = F.zerocopy_to_numpy(src)
    dst = F.zerocopy_to_numpy(dst)
    non_self_edges_idx = src != dst
    new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx])
    return new_g

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
def partition_graph_with_halo(g, node_part, num_hops):
    '''
    This is to partition a graph. Each partition contains HALO nodes
    so that we can generate NodeFlow in each partition correctly.

    Parameters
    ------------
    g: DGLGraph
        The graph to be partitioned

    node_part: 1D tensor
        Specify which partition a node is assigned to. The length of this tensor
        needs to be the same as the number of nodes of the graph. Each element
        indicates the partition Id of a node.

    num_hops: int
        The number of hops a HALO node can be accessed.

    Returns
    --------
    a dict of DGLGraphs
        The key is the partition Id and the value is the DGLGraph of the partition.
    '''
    assert len(node_part) == g.number_of_nodes()
    node_part = utils.toindex(node_part)
    subgs = _CAPI_DGLPartitionWithHalo(g._graph, node_part.todgltensor(), num_hops)
    subg_dict = {}
    for i, subg in enumerate(subgs):
        inner_node = _get_halo_subgraph_inner_node(subg)
        inner_edge = _get_halo_subgraph_inner_edge(subg)
563
        subg = g._create_subgraph(subg, subg.induced_nodes, subg.induced_edges)
564
565
566
567
568
569
570
        inner_node = F.zerocopy_from_dlpack(inner_node.to_dlpack())
        subg.ndata['inner_node'] = inner_node
        inner_edge = F.zerocopy_from_dlpack(inner_edge.to_dlpack())
        subg.edata['inner_edge'] = inner_edge
        subg_dict[i] = subg
    return subg_dict

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
def metis_partition(g, k, extra_cached_hops=0):
    '''
    This is to partition a graph with Metis partitioning.

    Metis assigns vertices to partitions. This API constructs graphs with the vertices assigned
    to the partitions and their incoming edges.

    The partitioned graph is stored in DGLGraph. The DGLGraph has the `part_id`
    node data that indicates the partition a node belongs to.

    Parameters
    ------------
    g: DGLGraph
        The graph to be partitioned

    k: int
        The number of partitions.

    extra_cached_hops: int
        The number of hops a HALO node can be accessed.

    Returns
    --------
    a dict of DGLGraphs
        The key is the partition Id and the value is the DGLGraph of the partition.
    '''
    # METIS works only on symmetric graphs.
598
599
600
    # The METIS runs on the symmetric graph to generate the node assignment to partitions.
    sym_g = to_bidirected(g, readonly=True)
    node_part = _CAPI_DGLMetisPartition(sym_g._graph, k)
601
602
603
604
    if len(node_part) == 0:
        return None

    node_part = utils.toindex(node_part)
605
    # Then we split the original graph into parts based on the METIS partitioning results.
606
607
608
609
610
611
612
    parts = partition_graph_with_halo(g, node_part, extra_cached_hops)
    node_part = node_part.tousertensor()
    for part_id in parts:
        part = parts[part_id]
        part.ndata['part_id'] = F.gather_row(node_part, part.parent_nid)
    return parts

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
def compact_graphs(graphs, always_preserve=None):
    """Given a list of graphs with the same set of nodes, find and eliminate the common
    isolated nodes across all graphs.

    This function requires the graphs to have the same set of nodes (i.e. the node types
    must be the same, and the number of nodes of each node type must be the same).  The
    metagraph does not have to be the same.

    It finds all the nodes that have zero in-degree and zero out-degree in all the given
    graphs, and eliminates them from all the graphs.

    Useful for graph sampling where we have a giant graph but we only wish to perform
    message passing on a smaller graph with a (tiny) subset of nodes.

    The node and edge features are not preserved.

    Parameters
    ----------
    graphs : DGLHeteroGraph or list[DGLHeteroGraph]
        The graph, or list of graphs
    always_preserve : Tensor or dict[str, Tensor], optional
        If a dict of node types and node ID tensors is given, the nodes of given
        node types would not be removed, regardless of whether they are isolated.
        If a Tensor is given, assume that all the graphs have one (same) node type.

    Returns
    -------
    DGLHeteroGraph or list[DGLHeteroGraph]
        The compacted graph or list of compacted graphs.

        Each returned graph would have a feature ``dgl.NID`` containing the mapping
        of node IDs for each type from the compacted graph(s) to the original graph(s).
        Note that the mapping is the same for all the compacted graphs.

    Bugs
    ----
    This function currently requires that the same node type of all graphs should have
    the same node type ID, i.e. the node types are *ordered* the same.

    Examples
    --------
    The following code constructs a bipartite graph with 20 users and 10 games, but
    only user #1 and #3, as well as game #3 and #5, have connections:

    >>> g = dgl.bipartite([(1, 3), (3, 5)], 'user', 'plays', 'game', card=(20, 10))

    The following would compact the graph above to another bipartite graph with only
    two users and two games.

    >>> new_g, induced_nodes = dgl.compact_graphs(g)
    >>> induced_nodes
    {'user': tensor([1, 3]), 'game': tensor([3, 5])}

    The mapping tells us that only user #1 and #3 as well as game #3 and #5 are kept.
    Furthermore, the first user and second user in the compacted graph maps to
    user #1 and #3 in the original graph.  Games are similar.

    One can verify that the edge connections are kept the same in the compacted graph.

    >>> new_g.edges(form='all', order='eid', etype='plays')
    (tensor([0, 1]), tensor([0, 1]), tensor([0, 1]))

    When compacting multiple graphs, nodes that do not have any connections in any
    of the given graphs are removed.  So if we compact ``g`` and the following ``g2``
    graphs together:

    >>> g2 = dgl.bipartite([(1, 6), (6, 8)], 'user', 'plays', 'game', card=(20, 10))
    >>> (new_g, new_g2), induced_nodes = dgl.compact_graphs([g, g2])
    >>> induced_nodes
    {'user': tensor([1, 3, 6]), 'game': tensor([3, 5, 6, 8])}

    Then one can see that user #1 from both graphs, users #3 from the first graph, as
    well as user #6 from the second graph, are kept.  Games are similar.

    Similarly, one can also verify the connections:

    >>> new_g.edges(form='all', order='eid', etype='plays')
    (tensor([0, 1]), tensor([0, 1]), tensor([0, 1]))
    >>> new_g2.edges(form='all', order='eid', etype='plays')
    (tensor([0, 2]), tensor([2, 3]), tensor([0, 1]))
    """
    return_single = False
    if not isinstance(graphs, Iterable):
        graphs = [graphs]
        return_single = True
    if len(graphs) == 0:
        return []

    # Ensure the node types are ordered the same.
    # TODO(BarclayII): we ideally need to remove this constraint.
    ntypes = graphs[0].ntypes
    graph_dtype = graphs[0]._graph.dtype()
    graph_ctx = graphs[0]._graph.ctx()
    for g in graphs:
        assert ntypes == g.ntypes, \
            ("All graphs should have the same node types in the same order, got %s and %s" %
             ntypes, g.ntypes)
        assert graph_dtype == g._graph.dtype(), "Graph data type mismatch"
        assert graph_ctx == g._graph.ctx(), "Graph device mismatch"

    # Process the dictionary or tensor of "always preserve" nodes
    if always_preserve is None:
        always_preserve = {}
    elif not isinstance(always_preserve, Mapping):
        if len(ntypes) > 1:
            raise ValueError("Node type must be given if multiple node types exist.")
        always_preserve = {ntypes[0]: always_preserve}

    always_preserve_nd = []
    for ntype in ntypes:
        nodes = always_preserve.get(ntype, None)
        if nodes is None:
            nodes = nd.empty([0], graph_dtype, graph_ctx)
        else:
            nodes = F.zerocopy_to_dgl_ndarray(nodes)
        always_preserve_nd.append(nodes)

    # Compact and construct heterographs
    new_graph_indexes, induced_nodes = _CAPI_DGLCompactGraphs(
        [g._graph for g in graphs], always_preserve_nd)
    induced_nodes = [F.zerocopy_from_dgl_ndarray(nodes.data) for nodes in induced_nodes]

    new_graphs = [
        DGLHeteroGraph(new_graph_index, graph.ntypes, graph.etypes)
        for new_graph_index, graph in zip(new_graph_indexes, graphs)]
    for g in new_graphs:
        for i, ntype in enumerate(graphs[0].ntypes):
            g.nodes[ntype].data[NID] = induced_nodes[i]
    if return_single:
        new_graphs = new_graphs[0]

    return new_graphs

746
def to_block(g, dst_nodes=None):
747
748
    """Convert a graph into a bipartite-structured "block" for message passing.

749
750
751
    A block graph is uni-directional bipartite graph consisting of two sets of nodes
    SRC and DST. Each set can have many node types while all the edges are from SRC
    nodes to DST nodes.
752

753
754
755
756
757
758
759
760
    Specifically, for each relation graph of canonical edge type ``(utype, etype, vtype)``,
    node type ``utype`` belongs to SRC while ``vtype`` belongs to DST.
    Edges from node type ``utype`` to node type ``vtype`` are preserved. If
    ``utype == vtype``, the result graph will have two node types of the same name ``utype``,
    but one belongs to SRC while the other belongs to DST. This is because although
    they have the same name, their node ids are relabeled differently (see below). In
    both cases, the canonical edge type in the new graph is still
    ``(utype, etype, vtype)``, so there is no difference when referring to it.
761

762
763
764
765
    Moreover, the function also relabels node ids in each type to make the graph more compact.
    Specifically, the nodes of type ``vtype`` would contain the nodes that have at least one
    inbound edge of any type, while ``utype`` would contain all the DST nodes of type ``utype``,
    as well as the nodes that have at least one outbound edge to any DST node.
766

767
768
769
770
771
772
773
774
775
776
777
778
    Since DST nodes are included in SRC nodes, a common requirement is to fetch
    the DST node features from the SRC nodes features. To avoid expensive sparse lookup,
    the function assures that the DST nodes in both SRC and DST sets have the same ids.
    As a result, given the node feature tensor ``X`` of type ``utype``,
    the following code finds the corresponding DST node features of type ``vtype``:

    .. code::

        X[:block.number_of_nodes('DST/vtype')]

    If the ``dst_nodes`` argument is given, the DST nodes would contain the given nodes.
    Otherwise, the DST nodes would be determined by DGL via the rules above.
779
780
781
782
783

    Parameters
    ----------
    graph : DGLHeteroGraph
        The graph.
784
785
    dst_nodes : Tensor or dict[str, Tensor], optional
        Optional DST nodes. If a tensor is given, the graph must have only one node type.
786
787
788
789
790
791
792
793
794
795
796
797
798

    Returns
    -------
    DGLHeteroGraph
        The new graph describing the block.

        The node IDs induced for each type in both sides would be stored in feature
        ``dgl.NID``.

        The edge IDs induced for each type would be stored in feature ``dgl.EID``.

    Notes
    -----
799
    This function is primarily for creating the structures for efficient
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
    computation of message passing.  See [TODO] for a detailed example.

    Examples
    --------
    Converting a homogeneous graph to a block as described above:
    >>> g = dgl.graph([(0, 1), (1, 2), (2, 3)])
    >>> block = dgl.to_block(g, torch.LongTensor([3, 2]))

    The right hand side nodes would be exactly the same as the ones given: [3, 2].
    >>> induced_dst = block.dstdata[dgl.NID]
    >>> induced_dst
    tensor([3, 2])

    The first few nodes of the left hand side nodes would also be exactly the same as
    the ones given.  The rest of the nodes are the ones necessary for message passing
    into nodes 3, 2.  This means that the node 1 would be included.
    >>> induced_src = block.srcdata[dgl.NID]
    >>> induced_src
    tensor([3, 2, 1])

    We can notice that the first two nodes are identical to the given nodes as well as
    the right hand side nodes.

    The induced edges can also be obtained by the following:
    >>> block.edata[dgl.EID]
    tensor([2, 1])

    This indicates that edge (2, 3) and (1, 2) are included in the result graph.  We can
    verify that the first edge in the block indeed maps to the edge (2, 3), and the
    second edge in the block indeed maps to the edge (1, 2):
    >>> src, dst = block.edges(order='eid')
    >>> induced_src[src], induced_dst[dst]
    (tensor([2, 1]), tensor([3, 2]))

    Converting a heterogeneous graph to a block is similar, except that when specifying
    the right hand side nodes, you have to give a dict:
    >>> g = dgl.bipartite([(0, 1), (1, 2), (2, 3)], utype='A', vtype='B')

838
    If you don't specify any node of type A on the right hand side, the node type ``A``
839
840
    in the block would have zero nodes.
    >>> block = dgl.to_block(g, {'B': torch.LongTensor([3, 2])})
841
    >>> block.number_of_nodes('A')
842
    0
843
    >>> block.number_of_nodes('B')
844
    2
845
    >>> block.nodes['B'].data[dgl.NID]
846
847
848
    tensor([3, 2])

    The left hand side would contain all the nodes on the right hand side:
849
    >>> block.nodes['B'].data[dgl.NID]
850
851
852
    tensor([3, 2])

    As well as all the nodes that have connections to the nodes on the right hand side:
853
    >>> block.nodes['A'].data[dgl.NID]
854
855
    tensor([2, 1])
    """
856
    if dst_nodes is None:
857
        # Find all nodes that appeared as destinations
858
        dst_nodes = defaultdict(list)
859
860
        for etype in g.canonical_etypes:
            _, dst = g.edges(etype=etype)
861
862
863
864
            dst_nodes[etype[2]].append(dst)
        dst_nodes = {ntype: F.unique(F.cat(values, 0)) for ntype, values in dst_nodes.items()}
    elif not isinstance(dst_nodes, Mapping):
        # dst_nodes is a Tensor, check if the g has only one type.
865
866
        if len(g.ntypes) > 1:
            raise ValueError(
867
868
                'Graph has more than one node type; please specify a dict for dst_nodes.')
        dst_nodes = {g.ntypes[0]: dst_nodes}
869

870
871
    # dst_nodes is now a dict
    dst_nodes_nd = []
872
    for ntype in g.ntypes:
873
        nodes = dst_nodes.get(ntype, None)
874
        if nodes is not None:
875
            dst_nodes_nd.append(F.zerocopy_to_dgl_ndarray(nodes))
876
        else:
877
            dst_nodes_nd.append(nd.null())
878

879
880
881
    new_graph_index, src_nodes_nd, induced_edges_nd = _CAPI_DGLToBlock(g._graph, dst_nodes_nd)
    src_nodes = [F.zerocopy_from_dgl_ndarray(nodes_nd.data) for nodes_nd in src_nodes_nd]
    dst_nodes = [F.zerocopy_from_dgl_ndarray(nodes_nd) for nodes_nd in dst_nodes_nd]
882

883
884
    # The new graph duplicates the original node types to SRC and DST sets.
    new_ntypes = ([ntype for ntype in g.ntypes], [ntype for ntype in g.ntypes])
885
    new_graph = DGLHeteroGraph(new_graph_index, new_ntypes, g.etypes)
886
    assert new_graph.is_unibipartite  # sanity check
887
888

    for i, ntype in enumerate(g.ntypes):
889
890
        new_graph.srcnodes[ntype].data[NID] = src_nodes[i]
        new_graph.dstnodes[ntype].data[NID] = dst_nodes[i]
891
892
893
894

    for i, canonical_etype in enumerate(g.canonical_etypes):
        induced_edges = F.zerocopy_from_dgl_ndarray(induced_edges_nd[i].data)
        utype, etype, vtype = canonical_etype
895
        new_canonical_etype = (utype, etype, vtype)
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        new_graph.edges[new_canonical_etype].data[EID] = induced_edges

    return new_graph

def remove_edges(g, edge_ids):
    """Return a new graph with given edge IDs removed.

    The nodes are preserved.

    Parameters
    ----------
    graph : DGLHeteroGraph
        The graph
    edge_ids : Tensor or dict[etypes, Tensor]
        The edge IDs for each edge type.

    Returns
    -------
    DGLHeteroGraph
        The new graph.
        The edge ID mapping from the new graph to the original graph is stored as
        ``dgl.EID`` on edge features.
    """
    if not isinstance(edge_ids, Mapping):
        if len(g.etypes) != 1:
            raise ValueError(
                "Graph has more than one edge type; specify a dict for edge_id instead.")
        edge_ids = {g.canonical_etypes[0]: edge_ids}

    edge_ids_nd = [None] * len(g.etypes)
    for key, value in edge_ids.items():
        edge_ids_nd[g.get_etype_id(key)] = F.zerocopy_to_dgl_ndarray(value)
    new_graph_index, induced_eids_nd = _CAPI_DGLRemoveEdges(g._graph, edge_ids_nd)

    new_graph = DGLHeteroGraph(new_graph_index, g.ntypes, g.etypes)
    for i, canonical_etype in enumerate(g.canonical_etypes):
        new_graph.edges[canonical_etype].data[EID] = F.zerocopy_from_dgl_ndarray(
            induced_eids_nd[i].data)

    return new_graph

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
def in_subgraph(g, nodes):
    """Extract the subgraph containing only the in edges of the given nodes.

    The subgraph keeps the same type schema and the cardinality of the original one.
    Node/edge features are not preserved. The original IDs
    the extracted edges are stored as the `dgl.EID` feature in the returned graph.

    Parameters
    ----------
    g : DGLHeteroGraph
        Full graph structure.
    nodes : tensor or dict
        Node ids to sample neighbors from. The allowed types
        are dictionary of node types to node id tensors, or simply node id tensor if
        the given graph g has only one type of nodes.

    Returns
    -------
    DGLHeteroGraph
        The subgraph.
    """
    if not isinstance(nodes, dict):
        if len(g.ntypes) > 1:
            raise DGLError("Must specify node type when the graph is not homogeneous.")
        nodes = {g.ntypes[0] : nodes}
    nodes_all_types = []
    for ntype in g.ntypes:
        if ntype in nodes:
            nodes_all_types.append(utils.toindex(nodes[ntype]).todgltensor())
        else:
            nodes_all_types.append(nd.array([], ctx=nd.cpu()))

    subgidx = _CAPI_DGLInSubgraph(g._graph, nodes_all_types)
    induced_edges = subgidx.induced_edges
    ret = DGLHeteroGraph(subgidx.graph, g.ntypes, g.etypes)
    for i, etype in enumerate(ret.canonical_etypes):
        ret.edges[etype].data[EID] = induced_edges[i].tousertensor()
    return ret

def out_subgraph(g, nodes):
    """Extract the subgraph containing only the out edges of the given nodes.

    The subgraph keeps the same type schema and the cardinality of the original one.
    Node/edge features are not preserved. The original IDs
    the extracted edges are stored as the `dgl.EID` feature in the returned graph.

    Parameters
    ----------
    g : DGLHeteroGraph
        Full graph structure.
    nodes : tensor or dict
        Node ids to sample neighbors from. The allowed types
        are dictionary of node types to node id tensors, or simply node id tensor if
        the given graph g has only one type of nodes.

    Returns
    -------
    DGLHeteroGraph
        The subgraph.
    """
    if not isinstance(nodes, dict):
        if len(g.ntypes) > 1:
            raise DGLError("Must specify node type when the graph is not homogeneous.")
        nodes = {g.ntypes[0] : nodes}
    nodes_all_types = []
    for ntype in g.ntypes:
        if ntype in nodes:
            nodes_all_types.append(utils.toindex(nodes[ntype]).todgltensor())
        else:
            nodes_all_types.append(nd.array([], ctx=nd.cpu()))

    subgidx = _CAPI_DGLOutSubgraph(g._graph, nodes_all_types)
    induced_edges = subgidx.induced_edges
    ret = DGLHeteroGraph(subgidx.graph, g.ntypes, g.etypes)
    for i, etype in enumerate(ret.canonical_etypes):
        ret.edges[etype].data[EID] = induced_edges[i].tousertensor()
    return ret

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
def to_simple(g, return_counts='count', writeback_mapping=None):
    """Convert a heterogeneous multigraph to a heterogeneous simple graph, coalescing
    duplicate edges into one.

    This function does not preserve node and edge features.

    Parameters
    ----------
    g : DGLHeteroGraph
        The heterogeneous graph
    return_counts : str, optional
        If given, the returned graph would have a column with the same name that stores
        the number of duplicated edges from the original graph.
    writeback_mapping : str, optional
        If given, the mapping from the edge IDs of original graph to those of the returned
        graph would be written into edge feature with this name in the original graph for
        each edge type.

    Returns
    -------
    DGLHeteroGraph
        The new heterogeneous simple graph.

    Examples
    --------
    Consider the following graph
    >>> g = dgl.graph([(0, 1), (1, 3), (2, 2), (1, 3), (1, 4), (1, 4)])
    >>> sg = dgl.to_simple(g, return_counts='weights', writeback_mapping='new_eid')

    The returned graph would have duplicate edges connecting (1, 3) and (1, 4) removed:
    >>> sg.all_edges(form='uv', order='eid')
    (tensor([0, 1, 1, 2]), tensor([1, 3, 4, 2]))

    If ``return_counts`` is set, the returned graph will also return how many edges
    in the original graph are connecting the endpoints of the edges in the new graph:
    >>> sg.edata['weights']
    tensor([1, 2, 2, 1])

    This essentially reads that one edge is connecting (0, 1) in ``g``, whereas 2 edges
    are connecting (1, 3) in ``g``, etc.

    One can also retrieve the mapping from the edges in the original graph to edges in
    the new graph by setting ``writeback_mapping`` and running
    >>> g.edata['new_eid']
    tensor([0, 1, 3, 1, 2, 2])

    This tells us that the first edge in ``g`` is mapped to the first edge in ``sg``, and
    the second and the fourth edge are mapped to the second edge in ``sg``, etc.
    """
    simple_graph_index, counts, edge_maps = _CAPI_DGLToSimpleHetero(g._graph)
    simple_graph = DGLHeteroGraph(simple_graph_index, g.ntypes, g.etypes)
    counts = [F.zerocopy_from_dgl_ndarray(count.data) for count in counts]
    edge_maps = [F.zerocopy_from_dgl_ndarray(edge_map.data) for edge_map in edge_maps]

    if return_counts is not None:
        for count, canonical_etype in zip(counts, g.canonical_etypes):
            simple_graph.edges[canonical_etype].data[return_counts] = count

    if writeback_mapping is not None:
        for edge_map, canonical_etype in zip(edge_maps, g.canonical_etypes):
            g.edges[canonical_etype].data[writeback_mapping] = edge_map

    return simple_graph

1079
_init_api("dgl.transform")