"vscode:/vscode.git/clone" did not exist on "cb00a19603dd59ca6682d113d0c9111036eab418"
pytest_utils.py 21.2 KB
Newer Older
1
2
import json
import logging
3
import os
4
5

import dgl
6
7
import numpy as np
import torch
8
from distpartitioning import array_readwriter
9
from distpartitioning.array_readwriter.parquet import ParquetArrayParser
10
11
12
from files import setdir


13
def _chunk_numpy_array(arr, fmt_meta, chunk_sizes, path_fmt, vector_rows=False):
14
15
16
17
18
    paths = []
    offset = 0

    for j, n in enumerate(chunk_sizes):
        path = os.path.abspath(path_fmt % j)
19
        arr_chunk = arr[offset : offset + n]
20
        shape = arr_chunk.shape
21
        logging.info("Chunking %d-%d" % (offset, offset + n))
22
23
        # If requested we write multi-column arrays as single-column vector Parquet files
        array_parser = array_readwriter.get_array_parser(**fmt_meta)
24
25
26
27
28
        if (
            isinstance(array_parser, ParquetArrayParser)
            and len(shape) > 1
            and shape[1] > 1
        ):
29
30
31
            array_parser.write(path, arr_chunk, vector_rows=vector_rows)
        else:
            array_parser.write(path, arr_chunk)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        offset += n
        paths.append(path)

    return paths


def _initialize_num_chunks(g, num_chunks, kwargs=None):
    """Initialize num_chunks for each node/edge.

    Parameters
    ----------
    g: DGLGraph
        Graph to be chunked.
    num_chunks: int
        Default number of chunks to be applied onto node/edge data.
    kwargs: dict
        Key word arguments to specify details for each node/edge data.

    Returns
    -------
    num_chunks_data: dict
        Detailed number of chunks for each node/edge.
    """

    def _init(g, num_chunks, key, kwargs=None):
        chunks_data = kwargs.get(key, None)
        is_node = "_node" in key
        data_types = g.ntypes if is_node else g.canonical_etypes
        if isinstance(chunks_data, int):
            chunks_data = {data_type: chunks_data for data_type in data_types}
        elif isinstance(chunks_data, dict):
            for data_type in data_types:
                if data_type not in chunks_data:
                    chunks_data[data_type] = num_chunks
        else:
            chunks_data = {data_type: num_chunks for data_type in data_types}
        for _, data in chunks_data.items():
            if isinstance(data, dict):
                n_chunks = list(data.values())
            else:
                n_chunks = [data]
            assert all(
                isinstance(v, int) for v in n_chunks
            ), "num_chunks for each data type should be int."
        return chunks_data

    num_chunks_data = {}
    for key in [
        "num_chunks_nodes",
        "num_chunks_edges",
        "num_chunks_node_data",
        "num_chunks_edge_data",
    ]:
        num_chunks_data[key] = _init(g, num_chunks, key, kwargs=kwargs)
    return num_chunks_data


def _chunk_graph(
90
91
92
93
94
95
96
97
98
    g,
    name,
    ndata_paths,
    edata_paths,
    num_chunks,
    data_fmt,
    edges_format,
    vector_rows=False,
    **kwargs,
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
):
    # First deal with ndata and edata that are homogeneous
    # (i.e. not a dict-of-dict)
    if len(g.ntypes) == 1 and not isinstance(
        next(iter(ndata_paths.values())), dict
    ):
        ndata_paths = {g.ntypes[0]: ndata_paths}
    if len(g.etypes) == 1 and not isinstance(
        next(iter(edata_paths.values())), dict
    ):
        edata_paths = {g.etypes[0]: ndata_paths}
    # Then convert all edge types to canonical edge types
    etypestrs = {etype: ":".join(etype) for etype in g.canonical_etypes}
    edata_paths = {
        ":".join(g.to_canonical_etype(k)): v for k, v in edata_paths.items()
    }

    metadata = {}

    metadata["graph_name"] = name
    metadata["node_type"] = g.ntypes

121
122
123
    # add node_type_counts
    metadata["num_nodes_per_type"] = [g.num_nodes(ntype) for ntype in g.ntypes]

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    # Initialize num_chunks for each node/edge.
    num_chunks_details = _initialize_num_chunks(g, num_chunks, kwargs=kwargs)

    # Compute the number of nodes per chunk per node type
    metadata["num_nodes_per_chunk"] = num_nodes_per_chunk = []
    num_chunks_nodes = num_chunks_details["num_chunks_nodes"]
    for ntype in g.ntypes:
        num_nodes = g.num_nodes(ntype)
        num_nodes_list = []
        n_chunks = num_chunks_nodes[ntype]
        for i in range(n_chunks):
            n = num_nodes // n_chunks + (i < num_nodes % n_chunks)
            num_nodes_list.append(n)
        num_nodes_per_chunk.append(num_nodes_list)

    metadata["edge_type"] = [etypestrs[etype] for etype in g.canonical_etypes]
140
141
142
    metadata["num_edges_per_type"] = [
        g.num_edges(etype) for etype in g.canonical_etypes
    ]
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    # Compute the number of edges per chunk per edge type
    metadata["num_edges_per_chunk"] = num_edges_per_chunk = []
    num_chunks_edges = num_chunks_details["num_chunks_edges"]
    for etype in g.canonical_etypes:
        num_edges = g.num_edges(etype)
        num_edges_list = []
        n_chunks = num_chunks_edges[etype]
        for i in range(n_chunks):
            n = num_edges // n_chunks + (i < num_edges % n_chunks)
            num_edges_list.append(n)
        num_edges_per_chunk.append(num_edges_list)
    num_edges_per_chunk_dict = {
        k: v for k, v in zip(g.canonical_etypes, num_edges_per_chunk)
    }

159
160
161
162
163
164
    idxes_etypestr = {
        idx: (etype, etypestrs[etype])
        for idx, etype in enumerate(g.canonical_etypes)
    }
    idxes = np.arange(len(idxes_etypestr))

165
166
167
    # Split edge index
    metadata["edges"] = {}
    with setdir("edge_index"):
168
169
170
171
        np.random.shuffle(idxes)
        for idx in idxes:
            etype = idxes_etypestr[idx][0]
            etypestr = idxes_etypestr[idx][1]
172
173
            logging.info("Chunking edge index for %s" % etypestr)
            edges_meta = {}
174
            if edges_format == "csv":
175
                fmt_meta = {"name": edges_format, "delimiter": " "}
176
            elif edges_format == "parquet":
177
178
179
                fmt_meta = {"name": edges_format}
            else:
                raise RuntimeError(f"Invalid edges_fmt: {edges_format}")
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            edges_meta["format"] = fmt_meta

            srcdst = torch.stack(g.edges(etype=etype), 1)
            edges_meta["data"] = _chunk_numpy_array(
                srcdst.numpy(),
                fmt_meta,
                num_edges_per_chunk_dict[etype],
                etypestr + "%d.txt",
            )
            metadata["edges"][etypestr] = edges_meta

    # Chunk node data
    reader_fmt_meta, writer_fmt_meta = {"name": "numpy"}, {"name": data_fmt}
    file_suffix = "npy" if data_fmt == "numpy" else "parquet"
    metadata["node_data"] = {}
    num_chunks_node_data = num_chunks_details["num_chunks_node_data"]
    with setdir("node_data"):
        for ntype, ndata_per_type in ndata_paths.items():
            ndata_meta = {}
            with setdir(ntype):
                for key, path in ndata_per_type.items():
                    logging.info(
                        "Chunking node data for type %s key %s" % (ntype, key)
                    )
                    chunk_sizes = []
                    num_nodes = g.num_nodes(ntype)
                    n_chunks = num_chunks_node_data[ntype]
                    if isinstance(n_chunks, dict):
                        n_chunks = n_chunks.get(key, num_chunks)
                    assert isinstance(n_chunks, int), (
                        f"num_chunks for {ntype}/{key} should be int while "
                        f"{type(n_chunks)} is got."
                    )
                    for i in range(n_chunks):
                        n = num_nodes // n_chunks + (i < num_nodes % n_chunks)
                        chunk_sizes.append(n)
                    ndata_key_meta = {}
                    arr = array_readwriter.get_array_parser(
                        **reader_fmt_meta
                    ).read(path)
                    ndata_key_meta["format"] = writer_fmt_meta
                    ndata_key_meta["data"] = _chunk_numpy_array(
                        arr,
                        writer_fmt_meta,
                        chunk_sizes,
                        key + "-%d." + file_suffix,
226
                        vector_rows=vector_rows,
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
                    )
                    ndata_meta[key] = ndata_key_meta

            metadata["node_data"][ntype] = ndata_meta

    # Chunk edge data
    metadata["edge_data"] = {}
    num_chunks_edge_data = num_chunks_details["num_chunks_edge_data"]
    with setdir("edge_data"):
        for etypestr, edata_per_type in edata_paths.items():
            edata_meta = {}
            etype = tuple(etypestr.split(":"))
            with setdir(etypestr):
                for key, path in edata_per_type.items():
                    logging.info(
                        "Chunking edge data for type %s key %s"
                        % (etypestr, key)
                    )
                    chunk_sizes = []
                    num_edges = g.num_edges(etype)
                    n_chunks = num_chunks_edge_data[etype]
                    if isinstance(n_chunks, dict):
                        n_chunks = n_chunks.get(key, num_chunks)
                    assert isinstance(n_chunks, int), (
                        f"num_chunks for {etype}/{key} should be int while "
                        f"{type(n_chunks)} is got."
                    )
                    for i in range(n_chunks):
                        n = num_edges // n_chunks + (i < num_edges % n_chunks)
                        chunk_sizes.append(n)
                    edata_key_meta = {}
                    arr = array_readwriter.get_array_parser(
                        **reader_fmt_meta
                    ).read(path)
                    edata_key_meta["format"] = writer_fmt_meta
                    edata_key_meta["data"] = _chunk_numpy_array(
                        arr,
                        writer_fmt_meta,
                        chunk_sizes,
                        key + "-%d." + file_suffix,
267
                        vector_rows=vector_rows,
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                    )
                    edata_meta[key] = edata_key_meta

            metadata["edge_data"][etypestr] = edata_meta

    metadata_path = "metadata.json"
    with open(metadata_path, "w") as f:
        json.dump(metadata, f, sort_keys=True, indent=4)
    logging.info("Saved metadata in %s" % os.path.abspath(metadata_path))


def chunk_graph(
    g,
    name,
    ndata_paths,
    edata_paths,
    num_chunks,
    output_path,
    data_fmt="numpy",
287
    edges_fmt="csv",
288
    vector_rows=False,
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    **kwargs,
):
    """
    Split the graph into multiple chunks.

    A directory will be created at :attr:`output_path` with the metadata and
    chunked edge list as well as the node/edge data.

    Parameters
    ----------
    g : DGLGraph
        The graph.
    name : str
        The name of the graph, to be used later in DistDGL training.
    ndata_paths : dict[str, pathlike] or dict[ntype, dict[str, pathlike]]
        The dictionary of paths pointing to the corresponding numpy array file
        for each node data key.
    edata_paths : dict[etype, pathlike] or dict[etype, dict[str, pathlike]]
        The dictionary of paths pointing to the corresponding numpy array file
        for each edge data key. ``etype`` could be canonical or non-canonical.
    num_chunks : int
        The number of chunks
    output_path : pathlike
        The output directory saving the chunked graph.
    data_fmt : str
        Format of node/edge data: 'numpy' or 'parquet'.
315
316
317
318
    edges_fmt : str
        Format of edges files: 'csv' or 'parquet'.
    vector_rows : str
        When true will write parquet files as single-column vector row files.
319
320
321
322
323
324
325
326
327
328
329
    kwargs : dict
        Key word arguments to control chunk details.
    """
    for ntype, ndata in ndata_paths.items():
        for key in ndata.keys():
            ndata[key] = os.path.abspath(ndata[key])
    for etype, edata in edata_paths.items():
        for key in edata.keys():
            edata[key] = os.path.abspath(edata[key])
    with setdir(output_path):
        _chunk_graph(
330
331
332
333
334
335
336
337
338
            g,
            name,
            ndata_paths,
            edata_paths,
            num_chunks,
            data_fmt,
            edges_fmt,
            vector_rows,
            **kwargs,
339
340
341
        )


342
def create_chunked_dataset(
343
344
345
346
347
348
349
    root_dir,
    num_chunks,
    data_fmt="numpy",
    edges_fmt="csv",
    vector_rows=False,
    **kwargs,
):
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    """
    This function creates a sample dataset, based on MAG240 dataset.

    Parameters:
    -----------
    root_dir : string
        directory in which all the files for the chunked dataset will be stored.
    """
    # Step0: prepare chunked graph data format.
    # A synthetic mini MAG240.
    num_institutions = 1200
    num_authors = 1200
    num_papers = 1200

    def rand_edges(num_src, num_dst, num_edges):
        eids = np.random.choice(num_src * num_dst, num_edges, replace=False)
        src = torch.from_numpy(eids // num_dst)
        dst = torch.from_numpy(eids % num_dst)

        return src, dst

    num_cite_edges = 24 * 1000
    num_write_edges = 12 * 1000
    num_affiliate_edges = 2400

    # Structure.
    data_dict = {
        ("paper", "cites", "paper"): rand_edges(
            num_papers, num_papers, num_cite_edges
        ),
        ("author", "writes", "paper"): rand_edges(
            num_authors, num_papers, num_write_edges
        ),
        ("author", "affiliated_with", "institution"): rand_edges(
            num_authors, num_institutions, num_affiliate_edges
        ),
        ("institution", "writes", "paper"): rand_edges(
            num_institutions, num_papers, num_write_edges
        ),
    }
    src, dst = data_dict[("author", "writes", "paper")]
    data_dict[("paper", "rev_writes", "author")] = (dst, src)
    g = dgl.heterograph(data_dict)

    # paper feat, label, year
    num_paper_feats = 3
    paper_feat = np.random.randn(num_papers, num_paper_feats)
    num_classes = 4
    paper_label = np.random.choice(num_classes, num_papers)
    paper_year = np.random.choice(2022, num_papers)
    paper_orig_ids = np.arange(0, num_papers)
    writes_orig_ids = np.arange(0, num_write_edges)

    # masks.
    paper_train_mask = np.random.choice([True, False], num_papers)
    paper_test_mask = np.random.choice([True, False], num_papers)
    paper_val_mask = np.random.choice([True, False], num_papers)

    author_train_mask = np.random.choice([True, False], num_authors)
    author_test_mask = np.random.choice([True, False], num_authors)
    author_val_mask = np.random.choice([True, False], num_authors)

    inst_train_mask = np.random.choice([True, False], num_institutions)
    inst_test_mask = np.random.choice([True, False], num_institutions)
    inst_val_mask = np.random.choice([True, False], num_institutions)

    write_train_mask = np.random.choice([True, False], num_write_edges)
    write_test_mask = np.random.choice([True, False], num_write_edges)
    write_val_mask = np.random.choice([True, False], num_write_edges)

    # Edge features.
    cite_count = np.random.choice(10, num_cite_edges)
    write_year = np.random.choice(2022, num_write_edges)
    write2_year = np.random.choice(2022, num_write_edges)

    # Save features.
    input_dir = os.path.join(root_dir, "data_test")
    os.makedirs(input_dir)
    for sub_d in ["paper", "cites", "writes", "writes2"]:
        os.makedirs(os.path.join(input_dir, sub_d))

    paper_feat_path = os.path.join(input_dir, "paper/feat.npy")
    with open(paper_feat_path, "wb") as f:
        np.save(f, paper_feat)
    g.nodes["paper"].data["feat"] = torch.from_numpy(paper_feat)

    paper_label_path = os.path.join(input_dir, "paper/label.npy")
    with open(paper_label_path, "wb") as f:
        np.save(f, paper_label)
    g.nodes["paper"].data["label"] = torch.from_numpy(paper_label)

    paper_year_path = os.path.join(input_dir, "paper/year.npy")
    with open(paper_year_path, "wb") as f:
        np.save(f, paper_year)
    g.nodes["paper"].data["year"] = torch.from_numpy(paper_year)

    paper_orig_ids_path = os.path.join(input_dir, "paper/orig_ids.npy")
    with open(paper_orig_ids_path, "wb") as f:
        np.save(f, paper_orig_ids)
    g.nodes["paper"].data["orig_ids"] = torch.from_numpy(paper_orig_ids)

    cite_count_path = os.path.join(input_dir, "cites/count.npy")
    with open(cite_count_path, "wb") as f:
        np.save(f, cite_count)
    g.edges["cites"].data["count"] = torch.from_numpy(cite_count)

    write_year_path = os.path.join(input_dir, "writes/year.npy")
    with open(write_year_path, "wb") as f:
        np.save(f, write_year)
    g.edges[("author", "writes", "paper")].data["year"] = torch.from_numpy(
        write_year
    )
    g.edges["rev_writes"].data["year"] = torch.from_numpy(write_year)

    writes_orig_ids_path = os.path.join(input_dir, "writes/orig_ids.npy")
    with open(writes_orig_ids_path, "wb") as f:
        np.save(f, writes_orig_ids)
    g.edges[("author", "writes", "paper")].data["orig_ids"] = torch.from_numpy(
        writes_orig_ids
    )

    write2_year_path = os.path.join(input_dir, "writes2/year.npy")
    with open(write2_year_path, "wb") as f:
        np.save(f, write2_year)
    g.edges[("institution", "writes", "paper")].data["year"] = torch.from_numpy(
        write2_year
    )

    etype = ("author", "writes", "paper")
    write_train_mask_path = os.path.join(input_dir, "writes/train_mask.npy")
    with open(write_train_mask_path, "wb") as f:
        np.save(f, write_train_mask)
    g.edges[etype].data["train_mask"] = torch.from_numpy(write_train_mask)

    write_test_mask_path = os.path.join(input_dir, "writes/test_mask.npy")
    with open(write_test_mask_path, "wb") as f:
        np.save(f, write_test_mask)
    g.edges[etype].data["test_mask"] = torch.from_numpy(write_test_mask)

    write_val_mask_path = os.path.join(input_dir, "writes/val_mask.npy")
    with open(write_val_mask_path, "wb") as f:
        np.save(f, write_val_mask)
    g.edges[etype].data["val_mask"] = torch.from_numpy(write_val_mask)

    for sub_d in ["author", "institution"]:
        os.makedirs(os.path.join(input_dir, sub_d))
    paper_train_mask_path = os.path.join(input_dir, "paper/train_mask.npy")
    with open(paper_train_mask_path, "wb") as f:
        np.save(f, paper_train_mask)
    g.nodes["paper"].data["train_mask"] = torch.from_numpy(paper_train_mask)

    paper_test_mask_path = os.path.join(input_dir, "paper/test_mask.npy")
    with open(paper_test_mask_path, "wb") as f:
        np.save(f, paper_test_mask)
    g.nodes["paper"].data["test_mask"] = torch.from_numpy(paper_test_mask)

    paper_val_mask_path = os.path.join(input_dir, "paper/val_mask.npy")
    with open(paper_val_mask_path, "wb") as f:
        np.save(f, paper_val_mask)
    g.nodes["paper"].data["val_mask"] = torch.from_numpy(paper_val_mask)

    author_train_mask_path = os.path.join(input_dir, "author/train_mask.npy")
    with open(author_train_mask_path, "wb") as f:
        np.save(f, author_train_mask)
    g.nodes["author"].data["train_mask"] = torch.from_numpy(author_train_mask)

    author_test_mask_path = os.path.join(input_dir, "author/test_mask.npy")
    with open(author_test_mask_path, "wb") as f:
        np.save(f, author_test_mask)
    g.nodes["author"].data["test_mask"] = torch.from_numpy(author_test_mask)

    author_val_mask_path = os.path.join(input_dir, "author/val_mask.npy")
    with open(author_val_mask_path, "wb") as f:
        np.save(f, author_val_mask)
    g.nodes["author"].data["val_mask"] = torch.from_numpy(author_val_mask)

    inst_train_mask_path = os.path.join(input_dir, "institution/train_mask.npy")
    with open(inst_train_mask_path, "wb") as f:
        np.save(f, inst_train_mask)
    g.nodes["institution"].data["train_mask"] = torch.from_numpy(
        inst_train_mask
    )

    inst_test_mask_path = os.path.join(input_dir, "institution/test_mask.npy")
    with open(inst_test_mask_path, "wb") as f:
        np.save(f, inst_test_mask)
    g.nodes["institution"].data["test_mask"] = torch.from_numpy(inst_test_mask)

    inst_val_mask_path = os.path.join(input_dir, "institution/val_mask.npy")
    with open(inst_val_mask_path, "wb") as f:
        np.save(f, inst_val_mask)
    g.nodes["institution"].data["val_mask"] = torch.from_numpy(inst_val_mask)

    node_data = {
        "paper": {
            "feat": paper_feat_path,
            "train_mask": paper_train_mask_path,
            "test_mask": paper_test_mask_path,
            "val_mask": paper_val_mask_path,
            "label": paper_label_path,
            "year": paper_year_path,
            "orig_ids": paper_orig_ids_path,
        },
        "author": {
            "train_mask": author_train_mask_path,
            "test_mask": author_test_mask_path,
            "val_mask": author_val_mask_path,
        },
        "institution": {
            "train_mask": inst_train_mask_path,
            "test_mask": inst_test_mask_path,
            "val_mask": inst_val_mask_path,
        },
    }

    edge_data = {
        "cites": {"count": cite_count_path},
        ("author", "writes", "paper"): {
            "year": write_year_path,
            "orig_ids": writes_orig_ids_path,
            "train_mask": write_train_mask_path,
            "test_mask": write_test_mask_path,
            "val_mask": write_val_mask_path,
        },
        "rev_writes": {"year": write_year_path},
        ("institution", "writes", "paper"): {"year": write2_year_path},
    }

    output_dir = os.path.join(root_dir, "chunked-data")
    chunk_graph(
        g,
        "mag240m",
        node_data,
        edge_data,
        num_chunks=num_chunks,
        output_path=output_dir,
        data_fmt=data_fmt,
587
        edges_fmt=edges_fmt,
588
        vector_rows=vector_rows,
589
590
        **kwargs,
    )
591
    logging.debug("Done with creating chunked graph")
592
593

    return g