"vscode:/vscode.git/clone" did not exist on "7ca751ff7d8ddb341cb22cf000c0e8ce5fc1bb4d"
graphsage_cv.py 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
import argparse, time, math
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data

class GraphSAGELayer(gluon.Block):
    def __init__(self,
                 in_feats,
                 hidden,
                 out_feats,
                 dropout,
                 last=False,
                 **kwargs):
        super(GraphSAGELayer, self).__init__(**kwargs)
        self.last = last
        self.dropout = dropout
        with self.name_scope():
            self.dense1 = gluon.nn.Dense(hidden, in_units=in_feats)
            self.layer_norm1 = gluon.nn.LayerNorm(in_channels=hidden)
            self.dense2 = gluon.nn.Dense(out_feats, in_units=hidden)
            if not self.last:
                self.layer_norm2 = gluon.nn.LayerNorm(in_channels=out_feats)

    def forward(self, h):
        h = self.dense1(h)
        h = self.layer_norm1(h)
        h = mx.nd.relu(h)
        if self.dropout:
            h = mx.nd.Dropout(h, p=self.dropout)
        h = self.dense2(h)
        if not self.last:
            h = self.layer_norm2(h)
            h = mx.nd.relu(h)
        return h


class NodeUpdate(gluon.Block):
    def __init__(self, layer_id, in_feats, out_feats, hidden, dropout,
                 test=False, last=False):
        super(NodeUpdate, self).__init__()
        self.layer_id = layer_id
        self.dropout = dropout
        self.test = test
        self.last = last
        with self.name_scope():
            self.layer = GraphSAGELayer(in_feats, hidden, out_feats, dropout, last)

    def forward(self, node):
        h = node.data['h']
        norm = node.data['norm']
        # activation from previous layer of myself
        self_h = node.data['self_h']

        if self.test:
            h = (h - self_h) * norm
            # graphsage
            h = mx.nd.concat(h, self_h)
        else:
            agg_history_str = 'agg_h_{}'.format(self.layer_id-1)
            agg_history = node.data[agg_history_str]
            # normalization constant
            subg_norm = node.data['subg_norm']
            # delta_h (h - history) from previous layer of myself
            self_delta_h = node.data['self_delta_h']
            # control variate
            h = (h - self_delta_h) * subg_norm + agg_history * norm
            # graphsage
            h = mx.nd.concat(h, self_h)
            if self.dropout:
                h = mx.nd.Dropout(h, p=self.dropout)

        h = self.layer(h)

        return {'activation': h}



class GraphSAGETrain(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 dropout,
                 **kwargs):
        super(GraphSAGETrain, self).__init__(**kwargs)
        self.dropout = dropout
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.input_layer = GraphSAGELayer(2*in_feats, n_hidden, n_hidden, dropout)
            # hidden layers
            for i in range(1, n_layers):
                self.layers.add(NodeUpdate(i, 2*n_hidden, n_hidden, n_hidden, dropout))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, n_hidden, dropout, last=True))

    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        features = nf.layers[0].data['features']
        h = mx.nd.concat(h, features)
        if self.dropout:
            h = mx.nd.Dropout(h, p=self.dropout)

        h = self.input_layer(h)

        for i, layer in enumerate(self.layers):
            parent_nid = dgl.utils.toindex(nf.layer_parent_nid(i+1))
114
115
            layer_nid = nf.map_from_parent_nid(i, parent_nid,
                                               remap_local=True).as_in_context(h.context)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            self_h = h[layer_nid]
            # activation from previous layer of myself, used in graphSAGE
            nf.layers[i+1].data['self_h'] = self_h

            new_history = h.copy().detach()
            history_str = 'h_{}'.format(i)
            history = nf.layers[i].data[history_str]
            # delta_h used in control variate
            delta_h = h - history
            # delta_h from previous layer of the nodes in (i+1)-th layer, used in control variate
            nf.layers[i+1].data['self_delta_h'] = delta_h[layer_nid]

            nf.layers[i].data['h'] = delta_h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')
            # update history
            if i < nf.num_layers-1:
                nf.layers[i].data[history_str] = new_history

        return h


class GraphSAGEInfer(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 **kwargs):
        super(GraphSAGEInfer, self).__init__(**kwargs)
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.input_layer = GraphSAGELayer(2*in_feats, n_hidden, n_hidden, 0)
            # hidden layers
            for i in range(1, n_layers):
                self.layers.add(NodeUpdate(i, 2*n_hidden, n_hidden, n_hidden, 0, True))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, n_hidden, 0, True, last=True))


    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        features = nf.layers[0].data['features']
        h = mx.nd.concat(h, features)
        h = self.input_layer(h)

        for i, layer in enumerate(self.layers):
            nf.layers[i].data['h'] = h
            parent_nid = dgl.utils.toindex(nf.layer_parent_nid(i+1))
169
170
            layer_nid = nf.map_from_parent_nid(i, parent_nid,
                                               remap_local=True).as_in_context(h.context)
171
172
173
174
175
176
177
178
179
180
181
182
            # activation from previous layer of the nodes in (i+1)-th layer, used in graphSAGE
            self_h = h[layer_nid]
            nf.layers[i+1].data['self_h'] = self_h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')

        return h


183
def graphsage_cv_train(g, ctx, args, n_classes, train_nid, test_nid, n_test_samples, distributed):
184
185
186
187
    n0_feats = g.nodes[0].data['features']
    num_nodes = g.number_of_nodes()
    in_feats = n0_feats.shape[1]
    g_ctx = n0_feats.context
188
189

    norm = mx.nd.expand_dims(1./g.in_degrees().astype('float32'), 1)
190
    g.set_n_repr({'norm': norm.as_in_context(g_ctx)})
191
    degs = g.in_degrees().astype('float32').asnumpy()
192
    degs[degs > args.num_neighbors] = args.num_neighbors
193
    g.set_n_repr({'subg_norm': mx.nd.expand_dims(mx.nd.array(1./degs, ctx=g_ctx), 1)})
194
    n_layers = args.n_layers
195

196
197
198
199
200
201
    g.update_all(fn.copy_src(src='features', out='m'),
                 fn.sum(msg='m', out='preprocess'),
                 lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})
    for i in range(n_layers):
        g.init_ndata('h_{}'.format(i), (num_nodes, args.n_hidden), 'float32')
        g.init_ndata('agg_h_{}'.format(i), (num_nodes, args.n_hidden), 'float32')
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

    model = GraphSAGETrain(in_feats,
                           args.n_hidden,
                           n_classes,
                           n_layers,
                           args.dropout,
                           prefix='GraphSAGE')

    model.initialize(ctx=ctx)

    loss_fcn = gluon.loss.SoftmaxCELoss()

    infer_model = GraphSAGEInfer(in_feats,
                                 args.n_hidden,
                                 n_classes,
                                 n_layers,
                                 prefix='GraphSAGE')

    infer_model.initialize(ctx=ctx)

    # use optimizer
    print(model.collect_params())
224
    kv_type = 'dist_sync' if distributed else 'local'
225
226
    trainer = gluon.Trainer(model.collect_params(), 'adam',
                            {'learning_rate': args.lr, 'wd': args.weight_decay},
227
                            kvstore=mx.kv.create(kv_type))
228
229
230

    # initialize graph
    dur = []
231

232
    adj = g.adjacency_matrix(transpose=False).as_in_context(g_ctx)
233
    for epoch in range(args.n_epochs):
234
235
236
237
238
        start = time.time()
        if distributed:
            msg_head = "Worker {:d}, epoch {:d}".format(g.worker_id, epoch)
        else:
            msg_head = "epoch {:d}".format(epoch)
239
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size,
240
                                                       args.num_neighbors,
241
242
                                                       neighbor_type='in',
                                                       shuffle=True,
243
                                                       num_workers=32,
244
245
246
                                                       num_hops=n_layers,
                                                       add_self_loop=True,
                                                       seed_nodes=train_nid):
247
248
            for i in range(n_layers):
                agg_history_str = 'agg_h_{}'.format(i)
249
250
251
                dests = nf.layer_parent_nid(i+1).as_in_context(g_ctx)
                # TODO we could use DGLGraph.pull to implement this, but the current
                # implementation of pull is very slow. Let's manually do it for now.
252
253
                agg = mx.nd.dot(mx.nd.take(adj, dests), g.nodes[:].data['h_{}'.format(i)])
                g.set_n_repr({agg_history_str: agg}, dests)
254
255
256
257
258
259

            node_embed_names = [['preprocess', 'features', 'h_0']]
            for i in range(1, n_layers):
                node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1), 'subg_norm', 'norm'])
            node_embed_names.append(['agg_h_{}'.format(n_layers-1), 'subg_norm', 'norm'])

260
            nf.copy_from_parent(node_embed_names=node_embed_names, ctx=ctx)
261
262
263
            # forward
            with mx.autograd.record():
                pred = model(nf)
264
                batch_nids = nf.layer_parent_nid(-1)
265
                batch_labels = g.nodes[batch_nids].data['labels'].as_in_context(ctx)
266
                loss = loss_fcn(pred, batch_labels)
267
268
269
270
                if distributed:
                    loss = loss.sum() / (len(batch_nids) * g.num_workers)
                else:
                    loss = loss.sum() / (len(batch_nids))
271
272
273
274
275
276
277
278

            loss.backward()
            trainer.step(batch_size=1)

            node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)]
            node_embed_names.append([])

            nf.copy_to_parent(node_embed_names=node_embed_names)
279
        mx.nd.waitall()
280
        print(msg_head + ': training takes ' + str(time.time() - start))
281
282
283
284
285
286
287
288

        infer_params = infer_model.collect_params()

        for key in infer_params:
            idx = trainer._param2idx[key]
            trainer._kvstore.pull(idx, out=infer_params[key].data())

        num_acc = 0.
289
        num_tests = 0
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
        if not distributed or g.worker_id == 0:
            for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                           g.number_of_nodes(),
                                                           neighbor_type='in',
                                                           num_hops=n_layers,
                                                           seed_nodes=test_nid,
                                                           add_self_loop=True):
                node_embed_names = [['preprocess', 'features']]
                for i in range(n_layers):
                    node_embed_names.append(['norm', 'subg_norm'])
                nf.copy_from_parent(node_embed_names=node_embed_names, ctx=ctx)

                pred = infer_model(nf)
                batch_nids = nf.layer_parent_nid(-1)
305
                batch_labels = g.nodes[batch_nids].data['labels'].as_in_context(ctx)
306
307
308
309
310
311
312
313
                num_acc += (pred.argmax(axis=1) == batch_labels).sum().asscalar()
                num_tests += nf.layer_size(-1)
                if distributed:
                    g._sync_barrier()
                print(msg_head + ": Test Accuracy {:.4f}". format(num_acc/num_tests))
                break
        elif distributed:
                g._sync_barrier()