graph.py 7.64 KB
Newer Older
Zihao Ye's avatar
Zihao Ye committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import dgl
import torch as th
import numpy as np
import itertools
import time
from collections import *

Graph = namedtuple('Graph',
                   ['g', 'src', 'tgt', 'tgt_y', 'nids', 'eids', 'nid_arr', 'n_nodes', 'n_edges', 'n_tokens'])

class GraphPool:
    "Create a graph pool in advance to accelerate graph buildling phase in Transformer."
    def __init__(self, n=50, m=50):
        '''
        args:
            n: maximum length of input sequence.
            m: maximum length of output sequence.
        '''
        print('start creating graph pool...')
        tic = time.time()
        self.n, self.m = n, m
        g_pool = [[dgl.DGLGraph() for _ in range(m)] for _ in range(n)]
        num_edges = {
            'ee': np.zeros((n, n)).astype(int),
            'ed': np.zeros((n, m)).astype(int),
            'dd': np.zeros((m, m)).astype(int)
        }
        for i, j in itertools.product(range(n), range(m)):
            src_length = i + 1
            tgt_length = j + 1

            g_pool[i][j].add_nodes(src_length + tgt_length)
            enc_nodes = th.arange(src_length, dtype=th.long)
            dec_nodes = th.arange(tgt_length, dtype=th.long) + src_length

            # enc -> enc
            us = enc_nodes.unsqueeze(-1).repeat(1, src_length).view(-1)
            vs = enc_nodes.repeat(src_length)
            g_pool[i][j].add_edges(us, vs)
            num_edges['ee'][i][j] = len(us)
            # enc -> dec
            us = enc_nodes.unsqueeze(-1).repeat(1, tgt_length).view(-1)
            vs = dec_nodes.repeat(src_length)
            g_pool[i][j].add_edges(us, vs)
            num_edges['ed'][i][j] = len(us)
            # dec -> dec
            indices = th.triu(th.ones(tgt_length, tgt_length)) == 1
            us = dec_nodes.unsqueeze(-1).repeat(1, tgt_length)[indices]
            vs = dec_nodes.unsqueeze(0).repeat(tgt_length, 1)[indices]
            g_pool[i][j].add_edges(us, vs)
            num_edges['dd'][i][j] = len(us)

        print('successfully created graph pool, time: {0:0.3f}s'.format(time.time() - tic))
        self.g_pool = g_pool
        self.num_edges = num_edges

    def beam(self, src_buf, start_sym, max_len, k, device='cpu'):
        '''
        Return a batched graph for beam search during inference of Transformer.
        args:
            src_buf: a list of input sequence
            start_sym: the index of start-of-sequence symbol
            max_len: maximum length for decoding
            k: beam size
            device: 'cpu' or 'cuda:*' 
        '''
        g_list = []
        src_lens = [len(_) for _ in src_buf]
        tgt_lens = [max_len] * len(src_buf)
        num_edges = {'ee': [], 'ed': [], 'dd': []}
        for src_len, tgt_len in zip(src_lens, tgt_lens):
            i, j = src_len - 1, tgt_len - 1
            for _ in range(k):
                g_list.append(self.g_pool[i][j])
            for key in ['ee', 'ed', 'dd']:
                num_edges[key].append(int(self.num_edges[key][i][j]))

        g = dgl.batch(g_list)
        src, tgt = [], []
        src_pos, tgt_pos = [], []
        enc_ids, dec_ids = [], []
        e2e_eids, e2d_eids, d2d_eids = [], [], []
        n_nodes, n_edges, n_tokens = 0, 0, 0
        for src_sample, n, n_ee, n_ed, n_dd in zip(src_buf, src_lens, num_edges['ee'], num_edges['ed'], num_edges['dd']):
            for _ in range(k):
                src.append(th.tensor(src_sample, dtype=th.long, device=device))
                src_pos.append(th.arange(n, dtype=th.long, device=device))
                enc_ids.append(th.arange(n_nodes, n_nodes + n, dtype=th.long, device=device))
                n_nodes += n
                e2e_eids.append(th.arange(n_edges, n_edges + n_ee, dtype=th.long, device=device))
                n_edges += n_ee
                tgt_seq = th.zeros(max_len, dtype=th.long, device=device)
                tgt_seq[0] = start_sym
                tgt.append(tgt_seq)
                tgt_pos.append(th.arange(max_len, dtype=th.long, device=device))

                dec_ids.append(th.arange(n_nodes, n_nodes + max_len, dtype=th.long, device=device))
                n_nodes += max_len
                e2d_eids.append(th.arange(n_edges, n_edges + n_ed, dtype=th.long, device=device))
                n_edges += n_ed
                d2d_eids.append(th.arange(n_edges, n_edges + n_dd, dtype=th.long, device=device))
                n_edges += n_dd

        g.set_n_initializer(dgl.init.zero_initializer)
        g.set_e_initializer(dgl.init.zero_initializer)

        return Graph(g=g,
                     src=(th.cat(src), th.cat(src_pos)),
                     tgt=(th.cat(tgt), th.cat(tgt_pos)),
                     tgt_y=None,
                     nids = {'enc': th.cat(enc_ids), 'dec': th.cat(dec_ids)},
                     eids = {'ee': th.cat(e2e_eids), 'ed': th.cat(e2d_eids), 'dd': th.cat(d2d_eids)},
                     nid_arr = {'enc': enc_ids, 'dec': dec_ids},
                     n_nodes=n_nodes,
                     n_edges=n_edges,
                     n_tokens=n_tokens)

    def __call__(self, src_buf, tgt_buf, device='cpu'):
        '''
        Return a batched graph for the training phase of Transformer.
        args:
            src_buf: a set of input sequence arrays.
            tgt_buf: a set of output sequence arrays.
            device: 'cpu' or 'cuda:*'
        '''
        g_list = []
        src_lens = [len(_) for _ in src_buf]
        tgt_lens = [len(_) - 1 for _ in tgt_buf]
        num_edges = {'ee': [], 'ed': [], 'dd': []}
        for src_len, tgt_len in zip(src_lens, tgt_lens):
            i, j = src_len - 1, tgt_len - 1
            g_list.append(self.g_pool[i][j])
            for key in ['ee', 'ed', 'dd']:
                num_edges[key].append(int(self.num_edges[key][i][j]))

        g = dgl.batch(g_list)
        src, tgt, tgt_y = [], [], []
        src_pos, tgt_pos = [], []
        enc_ids, dec_ids = [], []
        e2e_eids, d2d_eids, e2d_eids = [], [], []
        n_nodes, n_edges, n_tokens = 0, 0, 0
        for src_sample, tgt_sample, n, m, n_ee, n_ed, n_dd in zip(src_buf, tgt_buf, src_lens, tgt_lens, num_edges['ee'], num_edges['ed'], num_edges['dd']):
            src.append(th.tensor(src_sample, dtype=th.long, device=device))
            tgt.append(th.tensor(tgt_sample[:-1], dtype=th.long, device=device))
            tgt_y.append(th.tensor(tgt_sample[1:], dtype=th.long, device=device))
            src_pos.append(th.arange(n, dtype=th.long, device=device))
            tgt_pos.append(th.arange(m, dtype=th.long, device=device))
            enc_ids.append(th.arange(n_nodes, n_nodes + n, dtype=th.long, device=device))
            n_nodes += n
            dec_ids.append(th.arange(n_nodes, n_nodes + m, dtype=th.long, device=device))
            n_nodes += m
            e2e_eids.append(th.arange(n_edges, n_edges + n_ee, dtype=th.long, device=device))
            n_edges += n_ee
            e2d_eids.append(th.arange(n_edges, n_edges + n_ed, dtype=th.long, device=device))
            n_edges += n_ed
            d2d_eids.append(th.arange(n_edges, n_edges + n_dd, dtype=th.long, device=device))
            n_edges += n_dd
            n_tokens += m


        g.set_n_initializer(dgl.init.zero_initializer)
        g.set_e_initializer(dgl.init.zero_initializer)

        return Graph(g=g,
                     src=(th.cat(src), th.cat(src_pos)),
                     tgt=(th.cat(tgt), th.cat(tgt_pos)),
                     tgt_y=th.cat(tgt_y),
                     nids = {'enc': th.cat(enc_ids), 'dec': th.cat(dec_ids)},
                     eids = {'ee': th.cat(e2e_eids), 'ed': th.cat(e2d_eids), 'dd': th.cat(d2d_eids)},
                     nid_arr = {'enc': enc_ids, 'dec': dec_ids},
                     n_nodes=n_nodes,
                     n_edges=n_edges,
                     n_tokens=n_tokens)