main.py 8.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import tqdm
from rec.model.pinsage import PinSage
from rec.datasets.movielens import MovieLens
from rec.utils import cuda
from dgl import DGLGraph

import argparse
import pickle
import os

parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default='SGD')
parser.add_argument('--lr', type=float, default=1)
parser.add_argument('--sched', type=str, default='none')
parser.add_argument('--layers', type=int, default=2)
parser.add_argument('--use-feature', action='store_true')
parser.add_argument('--sgd-switch', type=int, default=-1)
parser.add_argument('--n-negs', type=int, default=1)
parser.add_argument('--loss', type=str, default='hinge')
parser.add_argument('--hard-neg-prob', type=float, default=0)
args = parser.parse_args()

print(args)

cache_file = 'ml.pkl'

if os.path.exists(cache_file):
    with open(cache_file, 'rb') as f:
        ml = pickle.load(f)
else:
    ml = MovieLens('./ml-1m')
    with open(cache_file, 'wb') as f:
        pickle.dump(ml, f)

g = ml.g
neighbors = ml.user_neighbors + ml.movie_neighbors

n_hidden = 100
n_layers = args.layers
batch_size = 256
margin = 0.9

n_negs = args.n_negs
hard_neg_prob = args.hard_neg_prob

sched_lambda = {
        'none': lambda epoch: 1,
        'decay': lambda epoch: max(0.98 ** epoch, 1e-4),
        }
loss_func = {
        'hinge': lambda diff: (diff + margin).clamp(min=0).mean(),
        'bpr': lambda diff: (1 - torch.sigmoid(-diff)).mean(),
        }

model = cuda(PinSage(
    g.number_of_nodes(),
    [n_hidden] * (n_layers + 1),
    20,
    0.5,
    10,
    use_feature=args.use_feature,
    G=g,
    ))
opt = getattr(torch.optim, args.opt)(model.parameters(), lr=args.lr)
sched = torch.optim.lr_scheduler.LambdaLR(opt, sched_lambda[args.sched])


def forward(model, g_prior, nodeset, train=True):
    if train:
        return model(g_prior, nodeset)
    else:
        with torch.no_grad():
            return model(g_prior, nodeset)


def filter_nid(nids, nid_from):
    nids = [nid.numpy() for nid in nids]
    nid_from = nid_from.numpy()
    np_mask = np.logical_and(*[np.isin(nid, nid_from) for nid in nids])
    return [torch.from_numpy(nid[np_mask]) for nid in nids]


def runtrain(g_prior_edges, g_train_edges, train):
    global opt
    if train:
        model.train()
    else:
        model.eval()

    g_prior_src, g_prior_dst = g.find_edges(g_prior_edges)
    g_prior = DGLGraph()
    g_prior.add_nodes(g.number_of_nodes())
    g_prior.add_edges(g_prior_src, g_prior_dst)
    g_prior.ndata.update({k: cuda(v) for k, v in g.ndata.items()})
    edge_batches = g_train_edges[torch.randperm(g_train_edges.shape[0])].split(batch_size)

    with tqdm.tqdm(edge_batches) as tq:
        sum_loss = 0
        sum_acc = 0
        count = 0
        for batch_id, batch in enumerate(tq):
            count += batch.shape[0]
            src, dst = g.find_edges(batch)
            dst_neg = []
            for i in range(len(dst)):
                if np.random.rand() < hard_neg_prob:
                    nb = torch.LongTensor(neighbors[dst[i].item()])
                    mask = ~(g.has_edges_between(nb, src[i].item()).byte())
                    dst_neg.append(np.random.choice(nb[mask].numpy(), n_negs))
                else:
                    dst_neg.append(np.random.randint(
                        len(ml.user_ids), len(ml.user_ids) + len(ml.movie_ids), n_negs))
            dst_neg = torch.LongTensor(dst_neg)
            dst = dst.view(-1, 1).expand_as(dst_neg).flatten()
            src = src.view(-1, 1).expand_as(dst_neg).flatten()
            dst_neg = dst_neg.flatten()

            mask = (g_prior.in_degrees(dst_neg) > 0) & \
                   (g_prior.in_degrees(dst) > 0) & \
                   (g_prior.in_degrees(src) > 0)
            src = src[mask]
            dst = dst[mask]
            dst_neg = dst_neg[mask]
            if len(src) == 0:
                continue

            nodeset = cuda(torch.cat([src, dst, dst_neg]))
            src_size, dst_size, dst_neg_size = \
                    src.shape[0], dst.shape[0], dst_neg.shape[0]

            h_src, h_dst, h_dst_neg = (
                    forward(model, g_prior, nodeset, train)
                    .split([src_size, dst_size, dst_neg_size]))

            diff = (h_src * (h_dst_neg - h_dst)).sum(1)
            loss = loss_func[args.loss](diff)
            acc = (diff < 0).sum()
            assert loss.item() == loss.item()

            grad_sqr_norm = 0
            if train:
                opt.zero_grad()
                loss.backward()
                for name, p in model.named_parameters():
                    assert (p.grad != p.grad).sum() == 0
                    grad_sqr_norm += p.grad.norm().item() ** 2
                opt.step()

            sum_loss += loss.item()
            sum_acc += acc.item() / n_negs
            avg_loss = sum_loss / (batch_id + 1)
            avg_acc = sum_acc / count
            tq.set_postfix({'loss': '%.6f' % loss.item(),
                            'avg_loss': '%.3f' % avg_loss,
                            'avg_acc': '%.3f' % avg_acc,
                            'grad_norm': '%.6f' % np.sqrt(grad_sqr_norm)})

    return avg_loss, avg_acc


def runtest(g_prior_edges, validation=True):
    model.eval()

    n_users = len(ml.users.index)
    n_items = len(ml.movies.index)

    g_prior_src, g_prior_dst = g.find_edges(g_prior_edges)
    g_prior = DGLGraph()
    g_prior.add_nodes(g.number_of_nodes())
    g_prior.add_edges(g_prior_src, g_prior_dst)
    g_prior.ndata.update({k: cuda(v) for k, v in g.ndata.items()})

    hs = []
    with torch.no_grad():
        with tqdm.trange(n_users + n_items) as tq:
            for node_id in tq:
                nodeset = cuda(torch.LongTensor([node_id]))
                h = forward(model, g_prior, nodeset, False)
                hs.append(h)
    h = torch.cat(hs, 0)

    rr = []

    with torch.no_grad():
        with tqdm.trange(n_users) as tq:
            for u_nid in tq:
                uid = ml.user_ids[u_nid]
                pids_exclude = ml.ratings[
                        (ml.ratings['user_id'] == uid) &
                        (ml.ratings['train'] | ml.ratings['test' if validation else 'valid'])
                        ]['movie_id'].values
                pids_candidate = ml.ratings[
                        (ml.ratings['user_id'] == uid) &
                        ml.ratings['valid' if validation else 'test']
                        ]['movie_id'].values
                pids = np.setdiff1d(ml.movie_ids, pids_exclude)
                p_nids = np.array([ml.movie_ids_invmap[pid] for pid in pids])
                p_nids_candidate = np.array([ml.movie_ids_invmap[pid] for pid in pids_candidate])

                dst = torch.from_numpy(p_nids) + n_users
                src = torch.zeros_like(dst).fill_(u_nid)
                h_dst = h[dst]
                h_src = h[src]

                score = (h_src * h_dst).sum(1)
                score_sort_idx = score.sort(descending=True)[1].cpu().numpy()

                rank_map = {v: i for i, v in enumerate(p_nids[score_sort_idx])}
                rank_candidates = np.array([rank_map[p_nid] for p_nid in p_nids_candidate])
                rank = 1 / (rank_candidates + 1)
                rr.append(rank.mean())
                tq.set_postfix({'rank': rank.mean()})

    return np.array(rr)


def train():
    global opt, sched
    best_mrr = 0
    for epoch in range(500):
        ml.refresh_mask()
        g_prior_edges = g.filter_edges(lambda edges: edges.data['prior'])
        g_train_edges = g.filter_edges(lambda edges: edges.data['train'] & ~edges.data['inv'])
        g_prior_train_edges = g.filter_edges(
                lambda edges: edges.data['prior'] | edges.data['train'])

        print('Epoch %d validation' % epoch)
        with torch.no_grad():
            valid_mrr = runtest(g_prior_train_edges, True)
            if best_mrr < valid_mrr.mean():
                best_mrr = valid_mrr.mean()
                torch.save(model.state_dict(), 'model.pt')
        print(pd.Series(valid_mrr).describe())
        print('Epoch %d test' % epoch)
        with torch.no_grad():
            test_mrr = runtest(g_prior_train_edges, False)
        print(pd.Series(test_mrr).describe())

        print('Epoch %d train' % epoch)
        runtrain(g_prior_edges, g_train_edges, True)

        if epoch == args.sgd_switch:
            opt = torch.optim.SGD(model.parameters(), lr=0.6)
            sched = torch.optim.lr_scheduler.LambdaLR(opt, sched_lambda['decay'])
        elif epoch < args.sgd_switch:
            sched.step()


if __name__ == '__main__':
    train()