test_serialize.py 4.8 KB
Newer Older
VoVAllen's avatar
VoVAllen committed
1
2
3
4
5
6
7
8
9
import backend as F
import numpy as np
import scipy as sp
import time
import tempfile
import os

from dgl import DGLGraph
import dgl
10
11
import dgl.ndarray as nd
from dgl.data.utils import save_graphs, load_graphs, load_labels, save_tensors, load_tensors
VoVAllen's avatar
VoVAllen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

np.random.seed(44)


def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1,
                            format='coo') != 0).astype(np.int64)
    return DGLGraph(arr, readonly=True)


def construct_graph(n, readonly=True):
    g_list = []
    for i in range(n):
        g = generate_rand_graph(30)
        g.edata['e1'] = F.randn((g.number_of_edges(), 32))
        g.edata['e2'] = F.ones((g.number_of_edges(), 32))
        g.ndata['n1'] = F.randn((g.number_of_nodes(), 64))
        g.readonly(i % 2 == 0)
        g_list.append(g)
    return g_list


def test_graph_serialize_with_feature():
    num_graphs = 100

    t0 = time.time()

    g_list = construct_graph(num_graphs)

    t1 = time.time()

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list)

    t2 = time.time()
    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, _ = load_graphs(path, idx_list)

    t3 = time.time()
    idx = idx_list[0]
    load_g = loadg_list[0]
    print("Save time: {} s".format(t2 - t1))
    print("Load time: {} s".format(t3 - t2))
    print("Graph Construction time: {} s".format(t1 - t0))

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])
    assert F.allclose(load_g.edata['e1'], g_list[idx].edata['e1'])
    assert F.allclose(load_g.edata['e2'], g_list[idx].edata['e2'])
    assert F.allclose(load_g.ndata['n1'], g_list[idx].ndata['n1'])

    t4 = time.time()
    bg = dgl.batch(loadg_list)
    t5 = time.time()
    print("Batch time: {} s".format(t5 - t4))

    os.unlink(path)


def test_graph_serialize_without_feature():
    num_graphs = 100
    g_list = [generate_rand_graph(30) for _ in range(num_graphs)]

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list)

    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, _ = load_graphs(path, idx_list)

    idx = idx_list[0]
    load_g = loadg_list[0]

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])

    os.unlink(path)


def test_graph_serialize_with_labels():
    num_graphs = 100
    g_list = [generate_rand_graph(30) for _ in range(num_graphs)]
    labels = {"label": F.zeros((num_graphs, 1))}

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list, labels)

    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, l_labels0 = load_graphs(path, idx_list)
    l_labels = load_labels(path)
    assert F.allclose(l_labels['label'], labels['label'])
    assert F.allclose(l_labels0['label'], labels['label'])

    idx = idx_list[0]
    load_g = loadg_list[0]

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])

    os.unlink(path)


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def test_serialize_tensors():
    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    tensor_dict = {"a": F.tensor(
        [1, 3, -1, 0], dtype=F.int64), "1@1": F.tensor([1.5, 2], dtype=F.float32)}

    save_tensors(path, tensor_dict)

    load_tensor_dict = load_tensors(path)

    for key in tensor_dict:
        assert key in load_tensor_dict
        assert np.array_equal(
            F.asnumpy(load_tensor_dict[key]), F.asnumpy(tensor_dict[key]))

    load_nd_dict = load_tensors(path, return_dgl_ndarray=True)

    for key in tensor_dict:
        assert key in load_nd_dict
        assert isinstance(load_nd_dict[key], nd.NDArray)
        assert np.array_equal(
            load_nd_dict[key].asnumpy(), F.asnumpy(tensor_dict[key]))

    os.unlink(path)


VoVAllen's avatar
VoVAllen committed
166
167
168
169
if __name__ == "__main__":
    test_graph_serialize_with_feature()
    test_graph_serialize_without_feature()
    test_graph_serialize_with_labels()
170
    test_serialize_tensors()