test_edge_softmax_hetero.py 4.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import dgl
from dgl.ops import edge_softmax
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
import unittest, pytest
from dgl import DGLError
import test_utils
nv-dlasalle's avatar
nv-dlasalle committed
13
from test_utils import parametrize_idtype, get_cases
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from scipy.sparse import rand

rfuncs = {'sum': fn.sum, 'max': fn.max, 'min': fn.min, 'mean': fn.mean}
fill_value = {'sum': 0, 'max': float("-inf")}
feat_size = 2

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

    g = dgl.heterograph({
        ('user', 'follows', 'user'):  ([0, 1, 2, 1, 1], [0, 0, 1, 1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 1, 1], [0, 0, 1]),
        ('developer', 'develops', 'game'): ([0, 1, 0], [0, 1, 1]),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g


@pytest.mark.parametrize('g', get_cases(['clique']))
@pytest.mark.parametrize('norm_by', ['src', 'dst'])
# @pytest.mark.parametrize('shp', edge_softmax_shapes)
nv-dlasalle's avatar
nv-dlasalle committed
45
@parametrize_idtype
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def test_edge_softmax(g, norm_by, idtype):
    print("params", norm_by, idtype)

    g = create_test_heterograph(idtype)

    x1 = F.randn((g.num_edges('plays'),feat_size))
    x2 = F.randn((g.num_edges('follows'),feat_size))
    x3 = F.randn((g.num_edges('develops'),feat_size))
    x4 = F.randn((g.num_edges('wishes'),feat_size))

    F.attach_grad(F.clone(x1))
    F.attach_grad(F.clone(x2))
    F.attach_grad(F.clone(x3))
    F.attach_grad(F.clone(x4))

    g['plays'].edata['eid'] = x1
    g['follows'].edata['eid'] = x2
    g['develops'].edata['eid'] = x3
    g['wishes'].edata['eid'] = x4

    #################################################################
    #  edge_softmax() on homogeneous graph
    #################################################################

    with F.record_grad():
        hm_g = dgl.to_homogeneous(g)
        hm_x = F.cat((x3, x2, x1, x4), 0)
        hm_e = F.attach_grad(F.clone(hm_x))
        score_hm = edge_softmax(hm_g, hm_e, norm_by=norm_by)
        hm_g.edata['score'] = score_hm
        ht_g = dgl.to_heterogeneous(hm_g, g.ntypes, g.etypes)
        r1 =  ht_g.edata['score'][('user', 'plays', 'game')]
        r2 =  ht_g.edata['score'][('user', 'follows', 'user')]
        r3 =  ht_g.edata['score'][('developer', 'develops', 'game')]
        r4 =  ht_g.edata['score'][('user', 'wishes', 'game')]
        F.backward(F.reduce_sum(r1) + F.reduce_sum(r2))
        grad_edata_hm = F.grad(hm_e)

    #################################################################
    #  edge_softmax() on heterogeneous graph
    #################################################################

    e1 = F.attach_grad(F.clone(x1))
    e2 = F.attach_grad(F.clone(x2))
    e3 = F.attach_grad(F.clone(x3))
    e4 = F.attach_grad(F.clone(x4))
    e = {('user', 'follows', 'user'): e2,
        ('user', 'plays', 'game'): e1,
        ('user', 'wishes', 'game'): e4,
        ('developer', 'develops', 'game'): e3}
    with F.record_grad():
        score = edge_softmax(g, e, norm_by=norm_by)
        r5 =  score[('user', 'plays', 'game')]
        r6 =  score[('user', 'follows', 'user')]
        r7 =  score[('developer', 'develops', 'game')]
        r8 =  score[('user', 'wishes', 'game')]
        F.backward(F.reduce_sum(r5) + F.reduce_sum(r6))
        grad_edata_ht = F.cat((F.grad(e3), F.grad(e2), F.grad(e1), F.grad(e4)), 0)
        # correctness check
        assert F.allclose(r1, r5)
        assert F.allclose(r2, r6)
        assert F.allclose(r3, r7)
        assert F.allclose(r4, r8)
        assert F.allclose(grad_edata_hm, grad_edata_ht)

if __name__ == '__main__':
    test_edge_softmax()