test_minibatch.py 34.4 KB
Newer Older
1
2
import dgl
import dgl.graphbolt as gb
peizhou001's avatar
peizhou001 committed
3
import pytest
4
5
6
import torch


peizhou001's avatar
peizhou001 committed
7
8
9
10
relation = "A:r:B"
reverse_relation = "B:rr:A"


11
12
13
14
15
def test_minibatch_representation_homo():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
16
        ),
17
18
19
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
20
21
        ),
    ]
22
    original_column_node_ids = [
23
24
25
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
26
    original_row_node_ids = [
27
28
29
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
30
    original_edge_ids = [
31
32
33
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
34
    node_features = {"x": torch.tensor([5, 0, 2, 1])}
35
    edge_features = [
36
37
        {"x": torch.tensor([9, 0, 1, 1, 7, 4])},
        {"x": torch.tensor([0, 2, 2])},
38
39
40
41
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
42
            gb.SampledSubgraphImpl(
43
                sampled_csc=csc_formats[i],
44
45
46
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
47
48
49
50
51
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
52
53
54
    compacted_csc_formats = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 3]), indices=torch.tensor([3, 4, 5])
    )
55
56
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
57
58
59
60
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
61
62
        """MiniBatch(seeds=None,
          seed_nodes=None,
63
          sampled_subgraphs=None,
64
65
          positive_node_pairs=None,
          node_pairs_with_labels=None,
66
67
68
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
69
          negative_node_pairs=None,
70
71
72
          negative_dsts=None,
          labels=None,
          input_nodes=None,
73
          indexes=None,
74
          edge_features=None,
75
          compacted_seeds=None,
76
77
78
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
79
          blocks=None,
80
81
82
       )"""
    )
    result = str(minibatch)
83
    assert result == expect_result, print(expect_result, result)
84
85
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
86
        node_pairs=csc_formats,
87
88
89
90
91
92
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
93
        compacted_node_pairs=compacted_csc_formats,
94
95
96
97
98
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
99
100
        """MiniBatch(seeds=None,
          seed_nodes=None,
101
102
103
104
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                                                         indices=tensor([0, 1, 2, 2, 1, 2]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12, 13]),
105
106
107
                                               original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                               original_column_node_ids=tensor([10, 11, 12, 13]),
                            ),
108
109
110
111
                            SampledSubgraphImpl(sampled_csc=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                                                         indices=tensor([1, 2, 0]),
                                                           ),
                                               original_row_node_ids=tensor([10, 11, 12]),
112
113
114
                                               original_edge_ids=tensor([10, 15, 17]),
                                               original_column_node_ids=tensor([10, 11]),
                            )],
115
116
117
118
119
120
121
          positive_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ),
          node_pairs_with_labels=(CSCFormatBase(indptr=tensor([0, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ),
                                 tensor([0., 1., 2.])),
122
123
124
125
126
127
128
          node_pairs=[CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                   indices=tensor([0, 1, 2, 2, 1, 2]),
                     ),
                     CSCFormatBase(indptr=tensor([0, 2, 3]),
                                   indices=tensor([1, 2, 0]),
                     )],
          node_features={'x': tensor([5, 0, 2, 1])},
129
130
131
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
132
133
134
135
136
137
          negative_node_pairs=(tensor([[0],
                                      [1],
                                      [2]]),
                              tensor([[6],
                                      [0],
                                      [0]])),
138
139
140
141
142
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
143
          indexes=None,
144
145
          edge_features=[{'x': tensor([9, 0, 1, 1, 7, 4])},
                        {'x': tensor([0, 2, 2])}],
146
          compacted_seeds=None,
147
148
149
          compacted_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ),
150
151
152
153
154
155
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[6],
                                          [0],
                                          [0]]),
156
157
          blocks=[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6),
                 Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)],
158
159
160
161
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)
peizhou001's avatar
peizhou001 committed
162
163


164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def test_minibatch_representation_hetero():
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
214
                sampled_csc=csc_formats[i],
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_csc_formats = {
        relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 2, 3]), indices=torch.tensor([3, 4, 5])
        ),
        reverse_relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 0, 0, 1, 2]), indices=torch.tensor([0, 1])
        ),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
232
    # Test minibatch with all attributes.
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=csc_formats,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_csc_formats,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
251
252
        """MiniBatch(seeds=None,
          seed_nodes={'B': tensor([10, 15])},
253
254
255
256
257
258
          sampled_subgraphs=[SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                                                         indices=tensor([0, 1, 1]),
                                                           ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
259
260
261
                                               original_edge_ids={'A:r:B': tensor([19, 20, 21]), 'B:rr:A': tensor([23, 26])},
                                               original_column_node_ids={'B': tensor([10, 11, 12]), 'A': tensor([ 5,  7,  9, 11])},
                            ),
262
263
264
265
                            SampledSubgraphImpl(sampled_csc={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                         indices=tensor([1, 0]),
                                                           )},
                                               original_row_node_ids={'A': tensor([5, 7]), 'B': tensor([10, 11])},
266
267
268
                                               original_edge_ids={'A:r:B': tensor([10, 12])},
                                               original_column_node_ids={'B': tensor([10, 11])},
                            )],
269
270
271
272
273
274
275
276
277
278
279
          positive_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                            indices=tensor([0, 1]),
                              )},
          node_pairs_with_labels=({'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                               indices=tensor([0, 1]),
                                 )},
                                 {'B': tensor([2, 5])}),
280
281
282
283
284
285
286
287
288
289
290
291
          node_pairs=[{'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                   indices=tensor([0, 1, 1]),
                     ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )},
                     {'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )}],
          node_features={('A', 'x'): tensor([6, 4, 0, 1])},
          negative_srcs={'B': tensor([[8],
                                [1],
                                [6]])},
292
293
294
295
296
          negative_node_pairs={'A:r:B': (tensor([[0],
                                      [1],
                                      [2]]), tensor([[6],
                                      [0],
                                      [0]]))},
297
298
299
300
301
          negative_dsts={'B': tensor([[2],
                                [8],
                                [8]])},
          labels={'B': tensor([2, 5])},
          input_nodes={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
302
          indexes=None,
303
304
          edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                        {('A:r:B', 'x'): tensor([0, 6])}],
305
          compacted_seeds=None,
306
307
308
309
310
311
312
313
314
315
316
          compacted_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                             indices=tensor([0, 1]),
                               )},
          compacted_negative_srcs={'A:r:B': tensor([[0],
                                          [1],
                                          [2]])},
          compacted_negative_dsts={'A:r:B': tensor([[6],
                                          [0],
                                          [0]])},
317
318
319
320
321
322
323
324
          blocks=[Block(num_src_nodes={'A': 4, 'B': 3},
                       num_dst_nodes={'A': 4, 'B': 3},
                       num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
                       metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]),
                 Block(num_src_nodes={'A': 2, 'B': 2},
                       num_dst_nodes={'B': 2},
                       num_edges={('A', 'r', 'B'): 2},
                       metagraph=[('A', 'B', 'r')])],
325
326
327
328
329
330
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(result)


331
def test_get_dgl_blocks_homo():
332
333
334
335
336
337
338
339
340
341
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
342
343
344
345
346
347
348
349
350
351
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3]),
            indices=torch.tensor([0, 1, 2]),
        ),
    ]
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
372
373
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
374
375
376
377
378
379
380
381
382
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
383
384
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
385
    labels = torch.tensor([0.0, 1.0, 2.0])
386
    # Test minibatch with all attributes.
387
388
389
390
391
392
393
394
395
396
397
398
399
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
400
    dgl_blocks = minibatch.blocks
401
    expect_result = str(
402
        """[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6), Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)]"""
403
    )
404
    result = str(dgl_blocks)
405
406
407
    assert result == expect_result, print(result)


408
def test_get_dgl_blocks_hetero():
409
410
411
412
413
414
415
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
464
465
            gb.SampledSubgraphImpl(
                sampled_csc=csc_formats[i],
466
467
468
469
470
471
472
473
474
475
476
477
478
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_node_pairs = {
        relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
        reverse_relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
479
    # Test minibatch with all attributes.
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
497
    dgl_blocks = minibatch.blocks
498
    expect_result = str(
499
500
501
502
503
504
505
        """[Block(num_src_nodes={'A': 4, 'B': 3},
      num_dst_nodes={'A': 4, 'B': 3},
      num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
      metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]), Block(num_src_nodes={'A': 2, 'B': 2},
      num_dst_nodes={'B': 2},
      num_edges={('A', 'r', 'B'): 2},
      metagraph=[('A', 'B', 'r')])]"""
506
    )
507
    result = str(dgl_blocks)
508
509
510
    assert result == expect_result, print(result)


511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
@pytest.mark.parametrize(
    "mode", ["neg_graph", "neg_src", "neg_dst", "edge_classification"]
)
def test_minibatch_node_pairs_with_labels(mode):
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    if mode == "edge_classification":
        minibatch.labels = torch.tensor([0, 1]).long()
    # Act
    node_pairs, labels = minibatch.node_pairs_with_labels

    # Assert
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    elif mode != "edge_classification":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    else:
        expect_node_pairs = (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        )
        expect_labels = torch.tensor([0, 1]).long()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)


554
def create_homo_minibatch():
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.randint(0, 10, (4,))}
    edge_features = [
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
586
                sampled_csc=csc_formats[i],
587
588
589
590
591
592
593
594
595
596
597
598
599
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes=torch.tensor([10, 11, 12, 13]),
    )


600
def create_hetero_minibatch():
601
    sampled_csc = [
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
    edge_features = [
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
650
                sampled_csc=sampled_csc[i],
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
    )


667
def check_dgl_blocks_hetero(minibatch, blocks):
668
    etype = gb.etype_str_to_tuple(relation)
669
670
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
671
672
673
674
675
676
677
678
679
680
681
682
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        dst_ndoes = torch.arange(
683
            0, len(sampled_csc[i][relation].indptr) - 1
684
        ).repeat_interleave(sampled_csc[i][relation].indptr.diff())
685
        assert torch.equal(edges[0], sampled_csc[i][relation].indices)
686
687
688
689
690
691
        assert torch.equal(edges[1], dst_ndoes)
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    dst_ndoes = torch.arange(
692
        0, len(sampled_csc[0][reverse_relation].indptr) - 1
693
    ).repeat_interleave(sampled_csc[0][reverse_relation].indptr.diff())
694
    assert torch.equal(edges[0], sampled_csc[0][reverse_relation].indices)
695
696
697
698
699
700
701
702
703
    assert torch.equal(edges[1], dst_ndoes)
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


704
def check_dgl_blocks_homo(minibatch, blocks):
705
706
    sampled_csc = [
        subgraph.sampled_csc for subgraph in minibatch.sampled_subgraphs
707
708
709
710
711
712
713
714
715
716
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        dst_ndoes = torch.arange(
717
            0, len(sampled_csc[i].indptr) - 1
718
        ).repeat_interleave(sampled_csc[i].indptr.diff())
719
        assert torch.equal(block.edges()[0], sampled_csc[i].indices), print(
720
721
722
723
724
725
726
727
728
729
730
            block.edges()
        )
        assert torch.equal(block.edges()[1], dst_ndoes), print(block.edges())
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i]), print(
            block.edata[dgl.EID]
        )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID], original_row_node_ids[0]
    ), print(blocks[0].srcdata[dgl.NID])


731
def test_dgl_node_classification_without_feature():
732
    # Arrange
733
    minibatch = create_homo_minibatch()
734
735
736
737
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
738
    dgl_blocks = minibatch.blocks
739
740

    # Assert
741
742
743
    assert len(dgl_blocks) == 2
    assert minibatch.node_features is None
    assert minibatch.labels is None
744
    check_dgl_blocks_homo(minibatch, dgl_blocks)
745
746


747
def test_dgl_node_classification_homo():
748
    # Arrange
749
    minibatch = create_homo_minibatch()
750
751
752
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
753
    dgl_blocks = minibatch.blocks
754
755

    # Assert
756
    assert len(dgl_blocks) == 2
757
    check_dgl_blocks_homo(minibatch, dgl_blocks)
758
759


760
761
def test_dgl_node_classification_hetero():
    minibatch = create_hetero_minibatch()
762
763
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
764
765
    # Act
    dgl_blocks = minibatch.blocks
766
767

    # Assert
768
    assert len(dgl_blocks) == 2
769
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
770
771
772


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
773
def test_dgl_link_predication_homo(mode):
774
    # Arrange
775
    minibatch = create_homo_minibatch()
776
777
778
779
780
781
782
783
784
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
785
    dgl_blocks = minibatch.blocks
786
787

    # Assert
788
    assert len(dgl_blocks) == 2
789
    check_dgl_blocks_homo(minibatch, dgl_blocks)
790
791
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
792
            minibatch.negative_node_pairs[0],
793
            minibatch.compacted_negative_srcs,
794
795
796
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
797
            minibatch.negative_node_pairs[1],
798
            minibatch.compacted_negative_dsts,
799
        )
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    (
        node_pairs,
        labels,
    ) = minibatch.node_pairs_with_labels
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
    else:
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
    expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)
818
819
820


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
821
def test_dgl_link_predication_hetero(mode):
822
    # Arrange
823
    minibatch = create_hetero_minibatch()
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
845
    dgl_blocks = minibatch.blocks
846
847

    # Assert
848
    assert len(dgl_blocks) == 2
849
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
850
851
852
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
853
                minibatch.negative_node_pairs[etype][0],
854
                src,
855
856
857
858
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
859
                minibatch.negative_node_pairs[etype][1],
860
                minibatch.compacted_negative_dsts[etype],
861
            )
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944


def test_to_pyg_data():
    test_subgraph_a = gb.SampledSubgraphImpl(
        sampled_csc=gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        original_column_node_ids=torch.tensor([10, 11, 12, 13]),
        original_row_node_ids=torch.tensor([19, 20, 21, 22, 25, 30]),
        original_edge_ids=torch.tensor([10, 11, 12, 13]),
    )
    test_subgraph_b = gb.SampledSubgraphImpl(
        sampled_csc=gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3]),
            indices=torch.tensor([1, 2, 0]),
        ),
        original_row_node_ids=torch.tensor([10, 11, 12]),
        original_edge_ids=torch.tensor([10, 15, 17]),
        original_column_node_ids=torch.tensor([10, 11]),
    )
    expected_edge_index = torch.tensor(
        [[0, 0, 1, 1, 1, 2, 2, 3], [0, 1, 0, 1, 2, 1, 2, 2]]
    )
    expected_node_features = torch.tensor([[1], [2], [3], [4]])
    expected_labels = torch.tensor([0, 1])
    test_minibatch = gb.MiniBatch(
        sampled_subgraphs=[test_subgraph_a, test_subgraph_b],
        node_features={"feat": expected_node_features},
        labels=expected_labels,
    )
    pyg_data = test_minibatch.to_pyg_data()
    pyg_data.validate()
    assert torch.equal(pyg_data.edge_index, expected_edge_index)
    assert torch.equal(pyg_data.x, expected_node_features)
    assert torch.equal(pyg_data.y, expected_labels)

    # Test with sampled_csc as None.
    test_minibatch = gb.MiniBatch(
        sampled_subgraphs=None,
        node_features={"feat": expected_node_features},
        labels=expected_labels,
    )
    pyg_data = test_minibatch.to_pyg_data()
    assert pyg_data.edge_index is None, "Edge index should be none."

    # Test with node_features as None.
    test_minibatch = gb.MiniBatch(
        sampled_subgraphs=[test_subgraph_a],
        node_features=None,
        labels=expected_labels,
    )
    pyg_data = test_minibatch.to_pyg_data()
    assert pyg_data.x is None, "Node features should be None."

    # Test with labels as None.
    test_minibatch = gb.MiniBatch(
        sampled_subgraphs=[test_subgraph_a],
        node_features={"feat": expected_node_features},
        labels=None,
    )
    pyg_data = test_minibatch.to_pyg_data()
    assert pyg_data.y is None, "Labels should be None."

    # Test with multiple features.
    test_minibatch = gb.MiniBatch(
        sampled_subgraphs=[test_subgraph_a],
        node_features={
            "feat": expected_node_features,
            "extra_feat": torch.tensor([[3], [4]]),
        },
        labels=expected_labels,
    )
    try:
        pyg_data = test_minibatch.to_pyg_data()
        assert (
            pyg_data.x is None,
        ), "Multiple features case should raise an error."
    except AssertionError as e:
        assert (
            str(e)
            == "`to_pyg_data` only supports single feature homogeneous graph."
        )