state.py 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from collections import defaultdict, MutableMapping
import dgl.backend as F
import dgl.utils as utils

class NodeDict(MutableMapping):
    def __init__(self):
        self._node = set()
        self._attrs = defaultdict(dict)

    @staticmethod
    def _deltensor(attr_value, u):
        """
        Parameters
        ----------
        u : Tensor
        """
        isin = F.isin(attr_value.idx, u)
        if F.sum(isin):
            if F.prod(isin):
                return DGLNodeTensor
            else:
                return attr_value[1 - isin]

    @staticmethod
    def _delitem(attrs, attr_name, u, uu):
        """
        Parameters
        ----------
        attrs :
        """
        attr_value = attrs[attr_name]
        deltensor = NodeDict._deltensor
        if isinstance(attr_value, dict):
            if isinstance(u, list):
                for x in u:
                    attr_value.pop(x, None)
            elif isinstance(u, F.Tensor):
                uu = uu if uu else map(F.item, u)
                for x in uu:
                    attr_value.pop(x, None)
            elif u == slice(None, None, None):
                assert not uu
                attrs[attr_name] = {}
            else:
                raise RuntimeError()
        elif isinstance(attr_value, DGLNodeTensor):
            if isinstance(u, list):
                uu = uu if uu else F.tensor(u) # TODO(gaiyu): device, dtype, shape
                attrs[attr_name] = deltensor(attr_value, uu)
            elif isinstance(u, Tensor):
                attrs[attr_name] = deltensor(attr_value, u)
            elif u == slice(None, None, None):
                assert not uu
                attrs[attr_name] = DGLNodeTensor
            else:
                raise RuntimeError()
        elif attr_value != DGLNodeTensor:
            raise RuntimeError()

    def __delitem__(self, u):
        """
        Parameters
        ----------
        """
        if isinstance(u, list):
            assert utils.homogeneous(u, int)
            if all(x not in self._adj for x in u):
                raise KeyError()
            self._node = self._node.difference(set(u))
            uu = None
        elif isinstance(u, F.Tensor):
            assert len(F.shape(u)) == 1 \
                and F.isinteger(u) \
                and F.prod(u >= 0) \
                and F.unpackable(u)
            uu = F.unpackable(u)
            self._node = self._node.difference(set(uu))
        elif u == slice(None, None, None):
            uu = None
        else:
            assert isinstance(u, int) and u >= 0
            self._node.remove(u)
            u, uu = [u], None

        for attr_name in self._attrs:
            self._delitem(self._attrs, attr_name, u, uu)

    def __getitem__(self, u):
        """
        Parameters
        ----------
        u :
        """
        if isinstance(u, list):
            assert utils.homogeneous(u, int) and all(x >= 0 for x in u)
            if all(x not in self._node for x in u):
                raise KeyError()
            uu = None
        elif isinstance(u, F.Tensor):
            assert len(F.shape(u)) == 1 and F.unpackable(u)
            uu = list(map(F.item, F.unpack(u)))
            assert utils.homogeneous(uu, int) and all(x >= 0 for x in uu)
            if all(x not in self._node for x in uu):
                raise KeyError()
        elif u == slice(None, None, None):
            uu = None
        elif isinstance(u, int):
            assert u >= 0
            if u not in self._node:
                raise KeyError()
            uu = None
        else:
            raise KeyError()
        return LazyNodeAttrDict(u, uu, self._node, self._attrs)

    def __iter__(self):
        return iter(self._node)

    def __len__(self):
        return len(self._node)

    @staticmethod
    def _settensor(attrs, attr_name, u, uu, attr_value):
        """
        Parameters
        ----------
        attrs :
        attr_name :
        u : Tensor or slice(None, None, None) or None
        uu : list or None
        attr_value : Tensor
        """
        x = attrs[attr_name]
        if isinstance(x, dict):
            if isinstance(u, list):
                for y, z in zip(u, F.unpack(attr_value)):
                    x[y] = z
            elif isinstance(u, F.Tensor):
                uu = uu if uu else map(F.item, F.unpack(u))
                assert F.unpackable(attr_value)
                for y, z in zip(uu, F.unpack(attr_value)):
                    x[y] = z
            elif u == slice(None, None, None):
                assert not uu
                attrs[attr_name] = self._dictize(attr_value)
            else:
                raise RuntimeError()
        elif isinstance(x, DGLNodeTensor):
            u = u if u else F.tensor(uu)
            isin = F.isin(x.idx, u)
            if F.sum(isin):
                if F.prod(isin):
                    attrs[attr_name] = DGLEdgeTensor(u, attr_value)
                else:
                    y = attr_value[1 - isin]
                    z = DGLNodeTensor(u, attr_value)
                    attrs[attr_name] = concatenate([y, z])
        elif x == DGLNodeTensor:
            attrs[attr_name] = DGLEdgeTensor(F.tensor(u), attr_value)

    @staticmethod
    def _setitem(node, attrs, attr_name, u, uu, attr_value):
        def valid(x):
            return isinstance(attr_value, F.Tensor) \
                and F.shape(attr_value)[0] == x \
                and F.unpackable(attr_value)

        settensor = NodeDict._settensor

        if isinstance(u, list):
            assert valid(len(u))
            settensor(attrs, attr_name, u, None, attr_value)
        elif isinstance(u, F.Tensor):
            assert valid(F.shape(u)[0])
            settensor(attrs, attr_name, u, uu, attr_value)
        elif u == slice(None, None, None):
            assert valid(len(node))
            settensor(attrs, attr_name, u, None, attr_value)
        elif isinstance(u, int):
            assert u >= 0
            if isinstance(attr_value, F.Tensor):
                assert valid(1)
                settensor(attrs, attr_name, [u], None, attr_value)
            else:
                attrs[attr_name][u] = attr_value
        else:
            raise RuntimeError()

    def __setitem__(self, u, attrs):
        """
        Parameters
        ----------
        u :
        attrs : dict
        """
        if isinstance(u, list):
            assert utils.homogeneous(u, int) and all(x >= 0 for x in u)
            self._node.update(u)
            uu = None
        elif isinstance(u, F.Tensor):
            assert len(F.shape(u)) == 1 and F.isinteger(u) and F.prod(u >= 0)
            uu = list(map(F.item, F.unpack(u)))
            self._node.update(uu)
        elif u == slice(None, None, None):
            uu = None
        elif isinstance(u, int):
            assert u >= 0
            self._node.add(u)
            uu = None
        else:
            raise RuntimeError()

        for attr_name, attr_value in attrs.items():
            self._setitem(self._node, self._attrs, attr_name, u, uu, attr_value)

    @staticmethod
    def _tensorize(attr_value):
        assert isinstance(attr_value, dict)
        if attr_value:
            assert F.packable([x for x in attr_value.values()])
            keys, values = map(list, zip(*attr_value.items()))
            assert utils.homoegeneous(keys, int) and all(x >= 0 for x in keys)
            assert F.packable(values)
            idx = F.tensor(keys) # TODO(gaiyu): device, dtype, shape
            dat = F.pack(values) # TODO(gaiyu): device, dtype, shape
            return DGLNodeTensor(idx, dat)
        else:
            return DGLNodeTensor

    def tensorize(self, attr_name):
        self._attrs[attr_name] = self._tensorize(self.attrs[attr_name])

    def istensorized(self, attr_name):
        attr_value = self._attrs[attr_name]
        return isinstance(attr_value, DGLNodeTensor) or attr_value == DGLNodeTensor

    @staticmethod
    def _dictize(attr_value):
        assert isinstance(attr_value, DGLNodeTensor)
        keys = map(F.item, F.unpack(attr_value.idx))
        values = F.unpack(attr_value.dat)
        return dict(zip(keys, values))

    def dictize(self, attr_name):
        self._attrs[attr_name] = self._dictize(attr_name)

    def isdictized(self, attr_name):
        return isinstance(self._attrs[attr_name], dict)

    def purge(self):
        predicate = lambda x: (isinstance(x, dict) and x) or isinstance(x, DGLNodeTensor)
        self._attrs = {k : v for k, v in self._attrs.items() if predicate(v)}

class LazyNodeAttrDict(MutableMapping):
    """
    `__iter__` and `__len__` are undefined for list.
    """
    def __init__(self, u, uu, node, attrs):
        self._u = u
        self._uu = uu
        self._node = node
        self._attrs = attrs

    def __delitem__(self, attr_name):
        NodeDict._delitem(self._attrs, self._u, attr_name)

    def __getitem__(self, attr_name):
        attr_value = self._attrs[attr_name]
        if isinstance(self._u, list):
            if all(x not in self._node for x in self._u):
                raise KeyError()
            if isinstance(attr_value, dict):
                y = [attr_value[x] for x in self._u]
                assert F.packable(y)
                return F.pack(y)
            elif isinstance(attr_value, DGLNodeTensor):
                uu = self._uu if self._uu else F.tensor(u)
                isin = F.isin(attr_value.idx, uu)
                return attr_value[isin].dat
            else:
                raise KeyError()
        elif isinstance(self._u, F.Tensor):
            uu = self._uu if self._uu else list(map(F.item, F.unpack(self._u)))
            if all(x not in self._node for x in uu):
                raise KeyError()
            if isinstance(attr_value, dict):
                y_list = [attr_value[x] for x in uu]
                assert F.packable(y_list)
                return F.pack(y_list)
            elif isinstance(attr_value, DGLNodeTensor):
                isin = F.isin(attr_value.idx, self._u)
                return attr_value[isin].dat
            else:
                raise KeyError()
        elif self._u == slice(None, None, None):
            assert not self._uu
            if isinstance(attr_value, dict) and attr_value:
                return NodeDict._tensorize(attr_value).dat
            elif isinstance(attr_value, DGLNodeTensor):
                return attr_value.dat
            else:
                raise KeyError()
        elif isinstance(self._u, int):
            assert not self._uu
            if isinstance(attr_value, dict):
                return attr_value[self._u]
            elif isinstance(attr_value, DGLNodeTensor):
                try: # TODO(gaiyu)
                    return attr_value.dat[self._u]
                except:
                    raise KeyError()
            else:
                raise KeyError()
        else:
            raise KeyError()

    def __iter__(self):
        if isinstance(self._u, int):
            for key, value in self._attrs.items():
                if (isinstance(value, dict) and self._u in value) or \
                    (isinstance(value, DGLNodeTensor) and F.sum(value.idx == self._u)):
                    yield key
        else:
            raise RuntimeError()

    def __len__(self):
        return sum(1 for x in self)

    def __setitem__(self, attr_name, attr_value):
        """
        Parameters
        ----------
        """
        setitem = NodeDict._setitem
        if isinstance(self._u, int):
            assert self._u in self._node
            if isinstance(attr_value, F.Tensor):
                setitem(self._node, self._attrs, attr_name, self._u, None, attr_value)
            else:
                self._attrs[self._u][attr_name] = attr_value
        else:
            if all(x not in self._node for x in self._u):
                raise KeyError()
            setitem(self._node, self._attrs, self._u, self._uu, attr_name)

    def materialized(self):
        attrs = {}
        for key in self._attrs:
            try:
                attrs[key] = self[key]
            except:
                KeyError()
        return attrs

class AdjOuterDict(MutableMapping):
    def __init__(self):
        self._adj = defaultdict(lambda: defaultdict(dict))
        self._attrs = defaultdict(dict)

    @staticmethod
    def _delitem(attrs, attr_name, u, uu):
        attr_value = attrs[attr_name]
        if isinstance(attr_value, dict):
            if u == slice(None, None, None):
                assert not uu
                attrs[attr_name] = {}
            else:
                uu = uu if uu else map(F.item, u)
                for x in uu:
                    attr_value.pop(x, None)
        elif isinstance(attr_value, DGLNodeTensor):
            if u == slice(None, None, None):
                assert not uu
                attrs[attr_name] = DGLEdgeTensor
            else:
                u = u if u else F.tensor(uu) # TODO(gaiyu): device, dtype, shape
                isin = F.isin(attr_value.idx, u)
                if F.sum(isin):
                    if F.prod(isin):
                        attrs[attr_name] = DGLEdgeTensor
                    else:
                        attrs[attr_name] = attr_value[1 - isin]
        elif attr_value != DGLEdgeTensor:
            raise RuntimeError()

    def __delitem__(self, u):
        if isinstance(u, list):
            assert utils.homogeneous(u, int) and all(x >= 0 for x in u)
            if all(x not in self._attrs for x in u):
                raise KeyError()
            for x in u:
                self._attrs.pop(x, None)
        elif isinstance(u, F.Tensor):
            pass

        for attr_name in self._attrs:
            self._delitem(self._attrs, attr_name, u, uu)

    def __iter__(self):
        return iter(self._adj)

    def __len__(self):
        return len(self._adj)

    def __getitem__(self, u):
        if isinstance(u, list):
            assert utils.homogeneous(u, int)
            if all(x not in self._adj for x in u):
                raise KeyError()
        elif isinstance(u, slice):
            assert u == slice(None, None, None)
        elif u not in self._adj:
            raise KeyError()
        return LazyAdjInnerDict(u, self._adj, self._attrs)

    def __setitem__(self, u, attrs):
        pass

    def uv(self, attr_name, u=None, v=None):
        if u:
            assert not v
            assert (isinstance(u, list) and utils.homogeneous(u, int)) or \
                (isinstance(u, F.Tensor) and F.isinteger(u) and len(F.shape(u)) == 1)
        elif v:
            assert not u
            assert (isinstance(v, list) and utils.homogeneous(v, int)) or \
                (isinstance(v, F.Tensor) and F.isinteger(v) and len(F.shape(v)) == 1)
        else:
            raise RuntimeError()

        attr_value = self._attrs[attr_name]
        if isinstance(attr_value, dict):
            if u:
                v = [[src, dst] for dst in attr_value.get(src, {}) for src in u]
            elif v:
                pass
        elif isinstance(attr_value, DGLEdgeTensor):
            u, v = attr_value._complete(u, v)

        return u, v

class LazyAdjInnerDict(MutableMapping):
    def __init__(self, u, uu, adj, attrs):
        self._u = u
        self._uu = uu
        self._adj = adj
        self._attrs = attrs

    def __getitem__(self, v):
        pass

    def __iter__(self):
        if isinstance(self._u, int):
            pass
        else:
            raise RuntimeError()

    def __len__(self):
        if not isinstance(self._u, [list, slice]):
            return len(self._adj[u])
        else:
            raise RuntimeError()

    def __setitem__(self, v, attr_dict):
        pass

class LazyEdgeAttrDict(MutableMapping):
    """dict: attr_name -> attr"""
    def __init__(self, u, v, uu, vv, adj, attrs):
        self._u = u
        self._v = v
        self._uu = uu
        self._vv = vv
        self._adj = adj
        self._attrs = attrs

    def __getitem__(self, attr_name):
        edge_iter = utils.edge_iter(self._u, self._v)
        attr_list = [self._outer_dict[uu, vv][attr_name] for uu, vv in edge_iter]
        return F.pack(attr_list) if F.packable(attr_list) else attr_list
    
    def __iter__(self):
        raise NotImplementedError()

    def __len__(self):
        raise NotImplementedError()

    def __setitem__(self, attr_name, attr):
        if F.unpackable(attr):
            for [uu, vv], a in zip(utils.edge_iter(self._u, self._v), F.unpack(attr)):
                self._outer_dict[uu][vv][attr_name] = a
        else:
            for uu, vv in utils.edge_iter(self._u, self._v):
                self._outer_dict[uu][vv][attr_name] = attr
        
AdjInnerDict = dict
EdgeAttrDict = dict