sddmm.cuh 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/sddmm.cuh
 * \brief SDDMM CUDA kernel function header.
 */
#ifndef DGL_ARRAY_CUDA_SDDMM_CUH_
#define DGL_ARRAY_CUDA_SDDMM_CUH_

#include <dgl/bcast.h>
#include "macro.cuh"
#include "atomic.cuh"
#include "functor.cuh"
13
#include "fp16.cuh"
14
#include "./utils.h"
15
#include "../selector.h"
16
17
18
19
20
21
22
23
24
#include "../../runtime/cuda/cuda_common.h"

namespace dgl {

using namespace cuda;

namespace aten {
namespace cuda {

25
26
constexpr unsigned int full_mask = 0xffffffff;

27
28
29
30
31
32
33
34
/*!
 * \brief CUDA kernel of g-SDDMM on Coo format.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 */
template <typename Idx, typename DType, typename BinaryOp,
35
36
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
37
__global__ void SDDMMCooKernel(
38
39
40
41
42
43
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ row,
  const Idx* __restrict__ col,
  const Idx* __restrict__ edge_map,
44
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
45
46
47
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
48
49
50
51
52
53
54
55
  // SDDMM with COO.
  Idx ty = blockIdx.y * blockDim.y + threadIdx.y;
  const Idx stride_y = blockDim.y * gridDim.y;
  while (ty < E) {
    const Idx src = _ldg(row + ty);
    const Idx dst = _ldg(col + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    const DType* lhsoff = BinaryOp::use_lhs ?
56
      (lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len): nullptr;
57
    const DType* rhsoff = BinaryOp::use_rhs ?
58
      (rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len): nullptr;
59
60
61
62
    DType* outoff = out + eid * out_len;
    int tx = blockIdx.x * blockDim.x + threadIdx.x;
    const int stride_x = blockDim.x * gridDim.x;
    while (tx < out_len) {
63
64
      const Idx lhs_add = UseBcast ? lhs_off[tx] : tx;
      const Idx rhs_add = UseBcast ? rhs_off[tx] : tx;
65
66
67
68
69
70
71
72
73
74
75
      DType val = BinaryOp::Call(
          lhsoff + lhs_add * reduce_size,
          rhsoff + rhs_add * reduce_size,
          reduce_size);
      outoff[tx] = val;
      tx += stride_x;
    }
    ty += stride_y;
  }
}

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/*!
 * \brief CUDA kernel of SDDMM-dot on Coo format, accelerated with tree reduction.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 */
template <typename Idx, typename DType,
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
__global__ void SDDMMCooTreeReduceKernel(
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ row,
  const Idx* __restrict__ col,
  const Idx* __restrict__ edge_map,
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
  Idx ty = blockIdx.x * blockDim.y + threadIdx.y;
  if (ty < E) {
    const Idx src = _ldg(row + ty);
    const Idx dst = _ldg(col + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    const DType* lhsoff = lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len;
    const DType* rhsoff = rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len;
    DType* outoff = out + eid * out_len;
    int tx = threadIdx.x;  // tx < 32
    for (int i = blockIdx.y; i < out_len; i += gridDim.y) {  // over output feature dimension
      const Idx lhs_add = UseBcast ? __ldg(lhs_off + i) : i;
      const Idx rhs_add = UseBcast ? __ldg(rhs_off + i) : i;
109
      DType val = reduce::Sum<Idx, DType>::zero();;
Zihao Ye's avatar
Zihao Ye committed
110
      for (int j = tx; j < reduce_size; j += 64) {
111
        val += lhsoff[lhs_add * reduce_size + j] * rhsoff[rhs_add * reduce_size + j];
Zihao Ye's avatar
Zihao Ye committed
112
113
114
        if (j + 32 < reduce_size)
          val += lhsoff[lhs_add * reduce_size + j + 32] * rhsoff[rhs_add * reduce_size + j + 32];
      }
115
116
117
118
119
120
121
122
123
#pragma unroll
      for (int offset = 16; offset > 0; offset /= 2)
        val += __shfl_down_sync(full_mask, val, offset);
      if (tx == 0)
        outoff[i] = val;
    }
  }
}

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// Binary search the row_offsets to find the source node of the edge id.
template <typename Idx>
__device__ __forceinline__ Idx BinarySearchSrc(const Idx *array, Idx length, Idx eid) {
  Idx lo = 0, hi = length - 1;
  while (lo < hi) {
    Idx mid = (lo + hi) >> 1;
    if (_ldg(array + mid) <= eid) {
      lo = mid + 1;
    } else {
      hi = mid;
    }
  }
  // INVARIANT: lo == hi
  if (_ldg(array + hi) == eid) {
    return hi;
  } else {
    return hi - 1;
  }
}

/*!
 * \brief CUDA kernel of g-SDDMM on Csr format.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
150
 *       To efficiently find the source node idx and destination node index of an
151
152
153
 *       given edge on Csr format, it uses binary search (time complexity O(log N)).
 */
template <typename Idx, typename DType, typename BinaryOp,
154
155
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
156
__global__ void SDDMMCsrKernel(
157
158
159
160
161
162
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ indptr,
  const Idx* __restrict__ indices,
  const Idx* __restrict__ edge_map,
163
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
164
165
166
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
167
168
169
170
171
172
173
174
175
  // SDDMM with Csr.
  Idx ty = blockIdx.y * blockDim.y + threadIdx.y;
  const Idx stride_y = blockDim.y * gridDim.y;
  while (ty < E) {
    const Idx src = BinarySearchSrc<Idx>(indptr, N + 1, ty);
    const Idx dst = _ldg(indices + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    const int64_t stride_x = blockDim.x * gridDim.x;
176
177
178
179
    const DType* lhsoff = BinaryOp::use_lhs ?
      (lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len): nullptr;
    const DType* rhsoff = BinaryOp::use_rhs ?
      (rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len): nullptr;
180
181
    DType* outoff = out + eid * out_len;
    while (tx < out_len) {
182
183
      const Idx lhs_add = UseBcast ? lhs_off[tx] : tx;
      const Idx rhs_add = UseBcast ? rhs_off[tx] : tx;
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
      DType val = BinaryOp::Call(
          lhsoff + lhs_add * reduce_size,
          rhsoff + rhs_add * reduce_size,
          reduce_size);
      outoff[tx] = val;
      tx += stride_x;
    }
    ty += stride_y;
  }
}

/*!
 * \brief CUDA implementation of g-SDDMM on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
199
200
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
201
202
 * \param out The result feature on edges.
 */
203
204
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
205
206
207
void SDDMMCoo(
    const BcastOff& bcast,
    const COOMatrix& coo,
208
209
    NDArray lhs,
    NDArray rhs,
210
211
212
213
    NDArray out) {
  const Idx *row = coo.row.Ptr<Idx>();
  const Idx *col = coo.col.Ptr<Idx>();
  const Idx *edge_map = coo.data.Ptr<Idx>();
214
215
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
216
217
218
  DType *out_data = out.Ptr<DType>();
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();

219
  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
220
221
222
223
224
225
226
227
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int64_t nnz = coo.row->shape[0];
  const bool use_idx = !IsNullArray(coo.data);

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  if (std::is_same<Op, binary::Dot<DType> >::value && reduce_dim >= 32) {
    const int ntx = 32;  // on feature dimension
    const int nty = 8;   // on out dimension
    const int nbx = (nnz + nty - 1) / nty;
    const int nby = FindNumBlocks<'y'>(len);
    const dim3 nblks(nbx, nby);
    const dim3 nthrs(ntx, nty);
    BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
      CUDA_KERNEL_CALL((SDDMMCooTreeReduceKernel<Idx, DType, UseBcast, UseIdx, LhsTarget, RhsTarget>),
          nblks, nthrs, 0, thr_entry->stream,
          lhs_data, rhs_data, out_data,
          row, col, edge_map,
          coo.num_rows, coo.num_cols, nnz, reduce_dim,
          lhs_off, rhs_off,
          lhs_len, rhs_len, len);
243
    });
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  } else {
    const int ntx = FindNumThreads(len);
    const int nty = CUDA_MAX_NUM_THREADS / ntx;
    const int nbx = (len + ntx - 1) / ntx;
    const int nby = FindNumBlocks<'y'>((nnz + nty - 1) / nty);
    const dim3 nblks(nbx, nby);
    const dim3 nthrs(ntx, nty);
    BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
      CUDA_KERNEL_CALL((SDDMMCooKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
          nblks, nthrs, 0, thr_entry->stream,
          lhs_data, rhs_data, out_data,
          row, col, edge_map,
          coo.num_rows, coo.num_cols, nnz, reduce_dim,
          lhs_off, rhs_off,
          lhs_len, rhs_len, len);
    });
  }
261
262
263
264
265
266
}

/*!
 * \brief CUDA implementation of g-SDDMM on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
267
268
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
269
270
 * \param out The result feature on edges.
 */
271
272
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
273
274
275
void SDDMMCsr(
    const BcastOff& bcast,
    const CSRMatrix& csr,
276
277
278
279
    NDArray lhs,
    NDArray rhs,
    NDArray out) {
  const Idx *indptr = csr.indptr.Ptr<Idx>();
280
281
  const Idx *indices = csr.indices.Ptr<Idx>();
  const Idx *edge_map = csr.data.Ptr<Idx>();
282
283
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
284
285
286
287
  DType *out_data = out.Ptr<DType>();
  auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
  int64_t N = csr.num_rows, M = csr.num_cols, E = csr.indices->shape[0];

288
  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
289
290
291
292
293
294
295
296
297
298
299
300
301
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int ntx = FindNumThreads(len);
  const int nty = CUDA_MAX_NUM_THREADS / ntx;
  const int nbx = (len + ntx - 1) / ntx;
  const int nby = FindNumBlocks<'y'>((E + nty - 1) / nty);
  const dim3 nblks(nbx, nby);
  const dim3 nthrs(ntx, nty);
  const bool use_idx = !IsNullArray(csr.data);

302
  BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
303
304
    CUDA_KERNEL_CALL((SDDMMCsrKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
        nblks, nthrs, 0, thr_entry->stream,
305
        lhs_data, rhs_data, out_data,
306
307
        indptr, indices, edge_map,
        N, M, E, reduce_dim,
308
        lhs_off, rhs_off,
309
        lhs_len, rhs_len, len);
310
311
312
  });
}

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*!
 * \brief CUDA implementation of g-SDDMM on heterograph using Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
 * \param out The result feature on edges.
 * \param stream cudaStream id.
 */
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
void SDDMMCsrHetero(
    const BcastOff& bcast,
    const CSRMatrix& csr,
    NDArray lhs,
    NDArray rhs,
    NDArray out,
    cudaStream_t strm_id) {
  const Idx *indptr = csr.indptr.Ptr<Idx>();
  const Idx *indices = csr.indices.Ptr<Idx>();
  const Idx *edge_map = csr.data.Ptr<Idx>();
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
  DType *out_data = out.Ptr<DType>();
  int64_t N = csr.num_rows, M = csr.num_cols, E = csr.indices->shape[0];

  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int ntx = FindNumThreads(len);
  const int nty = CUDA_MAX_NUM_THREADS / ntx;
  const int nbx = (len + ntx - 1) / ntx;
  const int nby = FindNumBlocks<'y'>((E + nty - 1) / nty);
  const dim3 nblks(nbx, nby);
  const dim3 nthrs(ntx, nty);
  const bool use_idx = !IsNullArray(csr.data);

  BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
    CUDA_KERNEL_CALL((SDDMMCsrKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
        nblks, nthrs, 0, strm_id,
        lhs_data, rhs_data, out_data,
        indptr, indices, edge_map,
        N, M, E, reduce_dim,
        lhs_off, rhs_off,
        lhs_len, rhs_len, len);
  });
}


365
366
367
368
369
}  // namespace cuda
}  // namespace aten
}  // namespace dgl

#endif