neighbor_sampler.cu 16.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
 *  Copyright (c) 2023 by Contributors
 *  Copyright (c) 2023, GT-TDAlab (Muhammed Fatih Balin & Umit V. Catalyurek)
 * @file cuda/index_select_impl.cu
 * @brief Index select operator implementation on CUDA.
 */
#include <c10/core/ScalarType.h>
#include <curand_kernel.h>
#include <graphbolt/cuda_ops.h>
#include <graphbolt/cuda_sampling_ops.h>
#include <thrust/gather.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/transform_output_iterator.h>

#include <algorithm>
#include <array>
#include <cub/cub.cuh>
#include <limits>
#include <numeric>
#include <type_traits>

#include "../random.h"
#include "./common.h"
#include "./utils.h"

namespace graphbolt {
namespace ops {

constexpr int BLOCK_SIZE = 128;

/**
 * @brief Fills the random_arr with random numbers and the edge_ids array with
 * original edge ids. When random_arr is sorted along with edge_ids, the first
 * fanout elements of each row gives us the sampled edges.
 */
template <
    typename float_t, typename indptr_t, typename indices_t, typename weights_t,
    typename edge_id_t>
__global__ void _ComputeRandoms(
    const int64_t num_edges, const indptr_t* const sliced_indptr,
    const indptr_t* const sub_indptr, const indices_t* const csr_rows,
43
    const weights_t* const sliced_weights, const indices_t* const indices,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    const uint64_t random_seed, float_t* random_arr, edge_id_t* edge_ids) {
  int64_t i = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride = gridDim.x * blockDim.x;
  curandStatePhilox4_32_10_t rng;
  const auto labor = indices != nullptr;

  if (!labor) {
    curand_init(random_seed, i, 0, &rng);
  }

  while (i < num_edges) {
    const auto row_position = csr_rows[i];
    const auto row_offset = i - sub_indptr[row_position];
    const auto in_idx = sliced_indptr[row_position] + row_offset;

    if (labor) {
      constexpr uint64_t kCurandSeed = 999961;
      curand_init(kCurandSeed, random_seed, indices[in_idx], &rng);
    }

    const auto rnd = curand_uniform(&rng);
65
66
    const auto prob =
        sliced_weights ? sliced_weights[i] : static_cast<weights_t>(1);
67
68
69
70
71
72
73
74
75
76
77
    const auto exp_rnd = -__logf(rnd);
    const float_t adjusted_rnd = prob > 0
                                     ? static_cast<float_t>(exp_rnd / prob)
                                     : std::numeric_limits<float_t>::infinity();
    random_arr[i] = adjusted_rnd;
    edge_ids[i] = row_offset;

    i += stride;
  }
}

78
79
80
81
82
83
84
struct IsPositive {
  template <typename probs_t>
  __host__ __device__ auto operator()(probs_t x) {
    return x > 0;
  }
};

85
86
87
template <typename indptr_t>
struct MinInDegreeFanout {
  const indptr_t* in_degree;
88
89
  const int64_t* fanouts;
  size_t num_fanouts;
90
91
  __host__ __device__ auto operator()(int64_t i) {
    return static_cast<indptr_t>(
92
        min(static_cast<int64_t>(in_degree[i]), fanouts[i % num_fanouts]));
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  }
};

template <typename indptr_t, typename indices_t>
struct IteratorFunc {
  indptr_t* indptr;
  indices_t* indices;
  __host__ __device__ auto operator()(int64_t i) { return indices + indptr[i]; }
};

template <typename indptr_t>
struct AddOffset {
  indptr_t offset;
  template <typename edge_id_t>
  __host__ __device__ indptr_t operator()(edge_id_t x) {
    return x + offset;
  }
};

template <typename indptr_t, typename indices_t>
struct IteratorFuncAddOffset {
  indptr_t* indptr;
  indptr_t* sliced_indptr;
  indices_t* indices;
  __host__ __device__ auto operator()(int64_t i) {
    return thrust::transform_output_iterator{
        indices + indptr[i], AddOffset<indptr_t>{sliced_indptr[i]}};
  }
};

123
124
125
126
127
128
129
130
131
template <typename indptr_t, typename in_degree_iterator_t>
struct SegmentEndFunc {
  indptr_t* indptr;
  in_degree_iterator_t in_degree;
  __host__ __device__ auto operator()(int64_t i) {
    return indptr[i] + in_degree[i];
  }
};

132
133
134
135
136
137
138
139
140
141
c10::intrusive_ptr<sampling::FusedSampledSubgraph> SampleNeighbors(
    torch::Tensor indptr, torch::Tensor indices, torch::Tensor nodes,
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<torch::Tensor> type_per_edge,
    torch::optional<torch::Tensor> probs_or_mask) {
  TORCH_CHECK(!replace, "Sampling with replacement is not supported yet!");
  // Assume that indptr, indices, nodes, type_per_edge and probs_or_mask
  // are all resident on the GPU. If not, it is better to first extract them
  // before calling this function.
  auto allocator = cuda::GetAllocator();
142
143
144
145
146
147
148
149
150
151
152
153
154
  auto num_rows = nodes.size(0);
  auto fanouts_pinned = torch::empty(
      fanouts.size(),
      c10::TensorOptions().dtype(torch::kLong).pinned_memory(true));
  auto fanouts_pinned_ptr = fanouts_pinned.data_ptr<int64_t>();
  for (size_t i = 0; i < fanouts.size(); i++) {
    fanouts_pinned_ptr[i] =
        fanouts[i] >= 0 ? fanouts[i] : std::numeric_limits<int64_t>::max();
  }
  // Finally, copy the adjusted fanout values to the device memory.
  auto fanouts_device = allocator.AllocateStorage<int64_t>(fanouts.size());
  CUDA_CALL(cudaMemcpyAsync(
      fanouts_device.get(), fanouts_pinned_ptr,
155
156
      sizeof(int64_t) * fanouts.size(), cudaMemcpyHostToDevice,
      cuda::GetCurrentStream()));
157
158
  auto in_degree_and_sliced_indptr = SliceCSCIndptr(indptr, nodes);
  auto in_degree = std::get<0>(in_degree_and_sliced_indptr);
159
  auto sliced_indptr = std::get<1>(in_degree_and_sliced_indptr);
160
  torch::optional<int64_t> num_edges_;
161
162
163
164
  torch::Tensor sub_indptr;
  torch::optional<torch::Tensor> sliced_probs_or_mask;
  if (probs_or_mask.has_value()) {
    torch::Tensor sliced_probs_or_mask_tensor;
165
166
167
    std::tie(sub_indptr, sliced_probs_or_mask_tensor) = IndexSelectCSCImpl(
        in_degree, sliced_indptr, probs_or_mask.value(), nodes,
        indptr.size(0) - 2, num_edges_);
168
    sliced_probs_or_mask = sliced_probs_or_mask_tensor;
169
    num_edges_ = sliced_probs_or_mask_tensor.size(0);
170
  }
171
172
  if (fanouts.size() > 1) {
    torch::Tensor sliced_type_per_edge;
173
174
175
    std::tie(sub_indptr, sliced_type_per_edge) = IndexSelectCSCImpl(
        in_degree, sliced_indptr, type_per_edge.value(), nodes,
        indptr.size(0) - 2, num_edges_);
176
177
178
    std::tie(sub_indptr, in_degree, sliced_indptr) = SliceCSCIndptrHetero(
        sub_indptr, sliced_type_per_edge, sliced_indptr, fanouts.size());
    num_rows = sliced_indptr.size(0);
179
180
181
182
183
    num_edges_ = sliced_type_per_edge.size(0);
  }
  // If sub_indptr was not computed in the two code blocks above:
  if (!probs_or_mask.has_value() && fanouts.size() <= 1) {
    sub_indptr = ExclusiveCumSum(in_degree);
184
  }
185
186
187
  auto max_in_degree = torch::empty(
      1,
      c10::TensorOptions().dtype(in_degree.scalar_type()).pinned_memory(true));
188
  AT_DISPATCH_INDEX_TYPES(
189
      indptr.scalar_type(), "SampleNeighborsInDegree", ([&] {
190
191
192
        CUB_CALL(
            DeviceReduce::Max, in_degree.data_ptr<index_t>(),
            max_in_degree.data_ptr<index_t>(), num_rows);
193
194
195
196
197
      }));
  auto coo_rows = CSRToCOO(sub_indptr, indices.scalar_type());
  const auto num_edges = coo_rows.size(0);
  const auto random_seed = RandomEngine::ThreadLocal()->RandInt(
      static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
198
  auto output_indptr = torch::empty_like(sub_indptr);
199
200
  torch::Tensor picked_eids;
  torch::Tensor output_indices;
201
  torch::optional<torch::Tensor> output_type_per_edge;
202

203
  AT_DISPATCH_INDEX_TYPES(
204
      indptr.scalar_type(), "SampleNeighborsIndptr", ([&] {
205
        using indptr_t = index_t;
206
207
208
209
210
211
212
213
        if (probs_or_mask.has_value()) {  // Count nonzero probs into in_degree.
          GRAPHBOLT_DISPATCH_ALL_TYPES(
              probs_or_mask.value().scalar_type(),
              "SampleNeighborsPositiveProbs", ([&] {
                using probs_t = scalar_t;
                auto is_nonzero = thrust::make_transform_iterator(
                    sliced_probs_or_mask.value().data_ptr<probs_t>(),
                    IsPositive{});
214
215
                CUB_CALL(
                    DeviceSegmentedReduce::Sum, is_nonzero,
216
217
                    in_degree.data_ptr<indptr_t>(), num_rows,
                    sub_indptr.data_ptr<indptr_t>(),
218
                    sub_indptr.data_ptr<indptr_t>() + 1);
219
220
              }));
        }
221
222
223
        thrust::counting_iterator<int64_t> iota(0);
        auto sampled_degree = thrust::make_transform_iterator(
            iota, MinInDegreeFanout<indptr_t>{
224
225
                      in_degree.data_ptr<indptr_t>(), fanouts_device.get(),
                      fanouts.size()});
226

227
228
229
230
        // Compute output_indptr.
        CUB_CALL(
            DeviceScan::ExclusiveSum, sampled_degree,
            output_indptr.data_ptr<indptr_t>(), num_rows + 1);
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        auto num_sampled_edges =
            cuda::CopyScalar{output_indptr.data_ptr<indptr_t>() + num_rows};

        // Find the smallest integer type to store the edge id offsets.
        // CSRToCOO had synch inside, so it is safe to read max_in_degree now.
        const int num_bits =
            cuda::NumberOfBits(max_in_degree.data_ptr<indptr_t>()[0]);
        std::array<int, 4> type_bits = {8, 16, 32, 64};
        const auto type_index =
            std::lower_bound(type_bits.begin(), type_bits.end(), num_bits) -
            type_bits.begin();
        std::array<torch::ScalarType, 5> types = {
            torch::kByte, torch::kInt16, torch::kInt32, torch::kLong,
            torch::kLong};
        auto edge_id_dtype = types[type_index];
        AT_DISPATCH_INTEGRAL_TYPES(
            edge_id_dtype, "SampleNeighborsEdgeIDs", ([&] {
              using edge_id_t = std::make_unsigned_t<scalar_t>;
              TORCH_CHECK(
                  num_bits <= sizeof(edge_id_t) * 8,
                  "Selected edge_id_t must be capable of storing edge_ids.");
              // Using bfloat16 for random numbers works just as reliably as
              // float32 and provides around %30 percent speedup.
              using rnd_t = nv_bfloat16;
              auto randoms = allocator.AllocateStorage<rnd_t>(num_edges);
              auto randoms_sorted = allocator.AllocateStorage<rnd_t>(num_edges);
              auto edge_id_segments =
                  allocator.AllocateStorage<edge_id_t>(num_edges);
              auto sorted_edge_id_segments =
                  allocator.AllocateStorage<edge_id_t>(num_edges);
262
              AT_DISPATCH_INDEX_TYPES(
263
                  indices.scalar_type(), "SampleNeighborsIndices", ([&] {
264
                    using indices_t = index_t;
265
266
267
268
269
270
271
272
273
                    auto probs_or_mask_scalar_type = torch::kFloat32;
                    if (probs_or_mask.has_value()) {
                      probs_or_mask_scalar_type =
                          probs_or_mask.value().scalar_type();
                    }
                    GRAPHBOLT_DISPATCH_ALL_TYPES(
                        probs_or_mask_scalar_type, "SampleNeighborsProbs",
                        ([&] {
                          using probs_t = scalar_t;
274
275
276
277
                          probs_t* sliced_probs_ptr = nullptr;
                          if (sliced_probs_or_mask.has_value()) {
                            sliced_probs_ptr = sliced_probs_or_mask.value()
                                                   .data_ptr<probs_t>();
278
279
280
281
282
283
284
285
                          }
                          const indices_t* indices_ptr =
                              layer ? indices.data_ptr<indices_t>() : nullptr;
                          const dim3 block(BLOCK_SIZE);
                          const dim3 grid(
                              (num_edges + BLOCK_SIZE - 1) / BLOCK_SIZE);
                          // Compute row and random number pairs.
                          CUDA_KERNEL_CALL(
286
287
                              _ComputeRandoms, grid, block, 0, num_edges,
                              sliced_indptr.data_ptr<indptr_t>(),
288
                              sub_indptr.data_ptr<indptr_t>(),
289
                              coo_rows.data_ptr<indices_t>(), sliced_probs_ptr,
290
291
292
293
294
295
296
297
                              indices_ptr, random_seed, randoms.get(),
                              edge_id_segments.get());
                        }));
                  }));

              // Sort the random numbers along with edge ids, after
              // sorting the first fanout elements of each row will
              // give us the sampled edges.
298
299
              CUB_CALL(
                  DeviceSegmentedSort::SortPairs, randoms.get(),
300
301
302
                  randoms_sorted.get(), edge_id_segments.get(),
                  sorted_edge_id_segments.get(), num_edges, num_rows,
                  sub_indptr.data_ptr<indptr_t>(),
303
                  sub_indptr.data_ptr<indptr_t>() + 1);
304
305
306
307
308

              picked_eids = torch::empty(
                  static_cast<indptr_t>(num_sampled_edges),
                  nodes.options().dtype(indptr.scalar_type()));

309
310
311
312
313
314
315
316
317
              // Need to sort the sampled edges only when fanouts.size() == 1
              // since multiple fanout sampling case is automatically going to
              // be sorted.
              if (type_per_edge && fanouts.size() == 1) {
                // Ensuring sort result still ends up in sorted_edge_id_segments
                std::swap(edge_id_segments, sorted_edge_id_segments);
                auto sampled_segment_end_it = thrust::make_transform_iterator(
                    iota, SegmentEndFunc<indptr_t, decltype(sampled_degree)>{
                              sub_indptr.data_ptr<indptr_t>(), sampled_degree});
318
319
                CUB_CALL(
                    DeviceSegmentedSort::SortKeys, edge_id_segments.get(),
320
321
                    sorted_edge_id_segments.get(), picked_eids.size(0),
                    num_rows, sub_indptr.data_ptr<indptr_t>(),
322
                    sampled_segment_end_it);
323
324
              }

325
326
327
328
329
330
331
332
333
334
335
336
337
338
              auto input_buffer_it = thrust::make_transform_iterator(
                  iota, IteratorFunc<indptr_t, edge_id_t>{
                            sub_indptr.data_ptr<indptr_t>(),
                            sorted_edge_id_segments.get()});
              auto output_buffer_it = thrust::make_transform_iterator(
                  iota, IteratorFuncAddOffset<indptr_t, indptr_t>{
                            output_indptr.data_ptr<indptr_t>(),
                            sliced_indptr.data_ptr<indptr_t>(),
                            picked_eids.data_ptr<indptr_t>()});
              constexpr int64_t max_copy_at_once =
                  std::numeric_limits<int32_t>::max();

              // Copy the sampled edge ids into picked_eids tensor.
              for (int64_t i = 0; i < num_rows; i += max_copy_at_once) {
339
340
                CUB_CALL(
                    DeviceCopy::Batched, input_buffer_it + i,
341
                    output_buffer_it + i, sampled_degree + i,
342
                    std::min(num_rows - i, max_copy_at_once));
343
344
345
346
347
348
349
350
              }
            }));

        output_indices = torch::empty(
            picked_eids.size(0),
            picked_eids.options().dtype(indices.scalar_type()));

        // Compute: output_indices = indices.gather(0, picked_eids);
351
        AT_DISPATCH_INDEX_TYPES(
352
            indices.scalar_type(), "SampleNeighborsOutputIndices", ([&] {
353
              using indices_t = index_t;
354
355
              THRUST_CALL(
                  gather, picked_eids.data_ptr<indptr_t>(),
356
357
358
359
                  picked_eids.data_ptr<indptr_t>() + picked_eids.size(0),
                  indices.data_ptr<indices_t>(),
                  output_indices.data_ptr<indices_t>());
            }));
360
361
362
363
364
365
366
367
368
369
370
371

        if (type_per_edge) {
          // output_type_per_edge = type_per_edge.gather(0, picked_eids);
          // The commented out torch equivalent above does not work when
          // type_per_edge is on pinned memory. That is why, we have to
          // reimplement it, similar to the indices gather operation above.
          auto types = type_per_edge.value();
          output_type_per_edge = torch::empty(
              picked_eids.size(0),
              picked_eids.options().dtype(types.scalar_type()));
          AT_DISPATCH_INTEGRAL_TYPES(
              types.scalar_type(), "SampleNeighborsOutputTypePerEdge", ([&] {
372
373
                THRUST_CALL(
                    gather, picked_eids.data_ptr<indptr_t>(),
374
375
376
377
378
                    picked_eids.data_ptr<indptr_t>() + picked_eids.size(0),
                    types.data_ptr<scalar_t>(),
                    output_type_per_edge.value().data_ptr<scalar_t>());
              }));
        }
379
380
      }));

381
382
383
  // Convert output_indptr back to homo by discarding intermediate offsets.
  output_indptr =
      output_indptr.slice(0, 0, output_indptr.size(0), fanouts.size());
384
385
386
387
388
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);

  return c10::make_intrusive<sampling::FusedSampledSubgraph>(
      output_indptr, output_indices, nodes, torch::nullopt,
389
      subgraph_reverse_edge_ids, output_type_per_edge);
390
391
392
393
}

}  //  namespace ops
}  //  namespace graphbolt