main.py 6.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import dgl
import copy
import torch
import numpy as np
from tqdm import tqdm
from torch.optim import AdamW
from torch.nn.functional import cosine_similarity
from utils import get_graph_drop_transform, CosineDecayScheduler, get_dataset
from model import GCN, GraphSAGE_GCN, MLP_Predictor, BGRL, compute_representations
from eval_function import fit_logistic_regression, fit_logistic_regression_preset_splits, fit_ppi_linear


import warnings
warnings.filterwarnings("ignore")


def train(step, model, optimizer, lr_scheduler, mm_scheduler, transform_1, transform_2, data, args):
    model.train()

    # update learning rate
    lr = lr_scheduler.get(step)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

    # update momentum
    mm = 1 - mm_scheduler.get(step)

    # forward
    optimizer.zero_grad()

    x1, x2 = transform_1(data), transform_2(data)

    if args.dataset != 'ppi':
        x1, x2 = dgl.add_self_loop(x1), dgl.add_self_loop(x2)

    q1, y2 = model(x1, x2)
    q2, y1 = model(x2, x1)

    loss = 2 - cosine_similarity(q1, y2.detach(), dim=-1).mean() - cosine_similarity(q2, y1.detach(), dim=-1).mean()
    loss.backward()

    # update online network
    optimizer.step()
    # update target network
    model.update_target_network(mm)

    return loss.item()


def eval(model, dataset, device, args, train_data, val_data, test_data):
    # make temporary copy of encoder
    tmp_encoder = copy.deepcopy(model.online_encoder).eval()
    val_scores = None

    if args.dataset == 'ppi':
        train_data = compute_representations(tmp_encoder, train_data, device)
        val_data = compute_representations(tmp_encoder, val_data, device)
        test_data = compute_representations(tmp_encoder, test_data, device)
        num_classes = train_data[1].shape[1]
        val_scores, test_scores = fit_ppi_linear(num_classes, train_data, val_data, test_data, device,
                                                 args.num_eval_splits)
    elif args.dataset != 'wiki_cs':
        representations, labels = compute_representations(tmp_encoder, dataset, device)
        test_scores = fit_logistic_regression(representations.cpu().numpy(), labels.cpu().numpy(),
                                              data_random_seed=args.data_seed, repeat=args.num_eval_splits)
    else:
        g = dataset[0]
        train_mask = g.ndata['train_mask']
        val_mask = g.ndata['val_mask']
        test_mask = g.ndata['test_mask']
        representations, labels = compute_representations(tmp_encoder, dataset, device)
        test_scores = fit_logistic_regression_preset_splits(representations.cpu().numpy(), labels.cpu().numpy(),
                                                            train_mask, val_mask, test_mask)

    return val_scores, test_scores


def main(args):
    # use CUDA_VISIBLE_DEVICES to select gpu
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    print('Using device:', device)

    dataset, train_data, val_data, test_data = get_dataset(args.dataset)

    g = dataset[0]
    g = g.to(device)

    input_size, representation_size = g.ndata['feat'].size(1), args.graph_encoder_layer[-1]

    # prepare transforms
    transform_1 = get_graph_drop_transform(drop_edge_p=args.drop_edge_p[0], feat_mask_p=args.feat_mask_p[0])
    transform_2 = get_graph_drop_transform(drop_edge_p=args.drop_edge_p[1], feat_mask_p=args.feat_mask_p[1])

    # scheduler
    lr_scheduler = CosineDecayScheduler(args.lr, args.lr_warmup_epochs, args.epochs)
    mm_scheduler = CosineDecayScheduler(1 - args.mm, 0, args.epochs)

    # build networks
    if args.dataset == 'ppi':
        encoder = GraphSAGE_GCN([input_size] + args.graph_encoder_layer)
    else:
        encoder = GCN([input_size] + args.graph_encoder_layer)
    predictor = MLP_Predictor(representation_size, representation_size, hidden_size=args.predictor_hidden_size)
    model = BGRL(encoder, predictor).to(device)

    # optimizer
    optimizer = AdamW(model.trainable_parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # train
    for epoch in tqdm(range(1, args.epochs + 1), desc='  - (Training)  '):
        train(epoch - 1, model, optimizer, lr_scheduler, mm_scheduler, transform_1, transform_2, g, args)
        if epoch % args.eval_epochs == 0:
            val_scores, test_scores = eval(model, dataset, device, args, train_data, val_data, test_data)
            if args.dataset == 'ppi':
                print('Epoch: {:04d} | Best Val F1: {:.4f} | Test F1: {:.4f}'.format(epoch, np.mean(val_scores),
                                                                                     np.mean(test_scores)))
            else:
                print('Epoch: {:04d} | Test Accuracy: {:.4f}'.format(epoch, np.mean(test_scores)))

    # save encoder weights
    if not os.path.isdir(args.weights_dir):
        os.mkdir(args.weights_dir)
    torch.save({'model': model.online_encoder.state_dict()},
               os.path.join(args.weights_dir, 'bgrl-{}.pt'.format(args.dataset)))


if __name__ == '__main__':
    from argparse import ArgumentParser

    parser = ArgumentParser()

    # Dataset options.
    parser.add_argument('--dataset', type=str, default='amazon_photos', choices=['coauthor_cs', 'coauthor_physics',
                                                                                 'amazon_photos', 'amazon_computers',
                                                                                 'wiki_cs', 'ppi'])

    # Model options.
    parser.add_argument('--graph_encoder_layer', type=int, nargs='+', default=[256, 128])
    parser.add_argument('--predictor_hidden_size', type=int, default=512)

    # Training options.
    parser.add_argument('--epochs', type=int, default=10000)
    parser.add_argument('--lr', type=float, default=1e-5)
    parser.add_argument('--weight_decay', type=float, default=1e-5)
    parser.add_argument('--mm', type=float, default=0.99)
    parser.add_argument('--lr_warmup_epochs', type=int, default=1000)
    parser.add_argument('--weights_dir', type=str, default='../weights')

    # Augmentations options.
    parser.add_argument('--drop_edge_p', type=float, nargs='+', default=[0., 0.])
    parser.add_argument('--feat_mask_p', type=float, nargs='+', default=[0., 0.])

    # Evaluation options.
    parser.add_argument('--eval_epochs', type=int, default=250)
    parser.add_argument('--num_eval_splits', type=int, default=20)
    parser.add_argument('--data_seed', type=int, default=1)

    # Experiment options.
    parser.add_argument('--num_experiments', type=int, default=20)

    args = parser.parse_args()

    main(args)