train.py 4.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
Compared with the original paper, this code does not implement
early stopping.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import argparse
import time
import mxnet as mx
from mxnet import gluon
import numpy as np
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from gat import GAT
VoVAllen's avatar
VoVAllen committed
21
from utils import EarlyStopping
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

def elu(data):
    return mx.nd.LeakyReLU(data, act_type='elu')


def evaluate(model, features, labels, mask):
    logits = model(features)
    logits = logits[mask].asnumpy().squeeze()
    val_labels = labels[mask].asnumpy().squeeze()
    max_index = np.argmax(logits, axis=1)
    accuracy = np.sum(np.where(max_index == val_labels, 1, 0)) / len(val_labels)
    return accuracy


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    features = mx.nd.array(data.features)
    labels = mx.nd.array(data.labels)
    mask = mx.nd.array(np.where(data.train_mask == 1))
    test_mask = mx.nd.array(np.where(data.test_mask == 1))
    val_mask = mx.nd.array(np.where(data.val_mask == 1))
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    if args.gpu < 0:
        ctx = mx.cpu()
    else:
        ctx = mx.gpu(args.gpu)
        features = features.as_in_context(ctx)
        labels = labels.as_in_context(ctx)
        mask = mask.as_in_context(ctx)
        test_mask = test_mask.as_in_context(ctx)
        val_mask = val_mask.as_in_context(ctx)
    # create graph
    g = data.graph
    # add self-loop
    g.remove_edges_from(g.selfloop_edges())
    g = DGLGraph(g)
    g.add_edges(g.nodes(), g.nodes())
    # create model
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
    model = GAT(g,
                args.num_layers,
                in_feats,
                args.num_hidden,
                n_classes,
                heads,
                elu,
                args.in_drop,
                args.attn_drop,
                args.alpha,
                args.residual)

VoVAllen's avatar
VoVAllen committed
78
    stopper = EarlyStopping(patience=100)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    model.initialize(ctx=ctx)

    # use optimizer
    trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr})

    dur = []
    for epoch in range(args.epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            logits = model(features)
            loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze())
            loss.backward()
        trainer.step(mask.shape[0])

        if epoch >= 3:
            dur.append(time.time() - t0)
        print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
            epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000))
VoVAllen's avatar
VoVAllen committed
99
100
101
102
103
        val_accuracy = evaluate(model, features, labels, val_mask)
        print("Validation Accuracy {:.4f}".format(val_accuracy))
        if stopper.step(val_accuracy, model): 
            break
    model.load_parameters('model.param')
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    test_accuracy = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(test_accuracy))


if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='GAT')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
                        help="which GPU to use. Set -1 to use CPU.")
    parser.add_argument("--epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--num-heads", type=int, default=8,
                        help="number of hidden attention heads")
    parser.add_argument("--num-out-heads", type=int, default=1,
                        help="number of output attention heads")
    parser.add_argument("--num-layers", type=int, default=1,
                        help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
                        help="number of hidden units")
    parser.add_argument("--residual", action="store_true", default=False,
                        help="use residual connection")
    parser.add_argument("--in-drop", type=float, default=.6,
                        help="input feature dropout")
    parser.add_argument("--attn-drop", type=float, default=.6,
                        help="attention dropout")
    parser.add_argument("--lr", type=float, default=0.005,
                        help="learning rate")
    parser.add_argument('--weight-decay', type=float, default=5e-4,
                        help="weight decay")
    parser.add_argument('--alpha', type=float, default=0.2,
                        help="the negative slop of leaky relu")
    args = parser.parse_args()
    print(args)

    main(args)